#format python """andgate using NeuralNetwork for practical example, see [AndGateShell.py] """ def f(x1,x2,w1,w2): return x1*w1 + x2*w2 thres = 0.5 isOver=lambda x1,x2,w1,w2:f(x1,x2,w1,w2)>thres result=isOver isSame=lambda x1,x2,w1,w2,expected:result(x1,x2,w1,w2)==expected def printGenerations(w1,w2): testCase=((0,0),(0,1),(1,0),(1,1)) for eachX1,eachX2 in testCase: print "(%d,%d) : %f"%(eachX1,eachX2,f(eachX1,eachX2,w1,w2)) def initialize(): pass def everythingDone(): pass def advanceGeneration(): pass def printParameters(): pass def calculateThisGeneration(w1,w2): testCases=((0,0,0), (0,1,0), (1,0,0), (1,1,1)) for eachX1,eachX2,expected in testCases: #t=result(eachX1,eachX2,w1,w2) if isSame(eachX1,eachX2,w1,w2,expected): continue w1,w2=adjust(eachX1,eachX2,w1,w2,expected) return w1,w2 def adjust(x1,x2,w1,w2,expected): diffForW1=0.1*(expected-f(x1,x2,w1,w2))*x1 diffForW2=0.1*(expected-f(x1,x2,w1,w2))*x2 newW1=w1+diffForW1 newW2=w2+diffForW2 return newW1,newW2 def untilDone(): initialize() iteration=0 while 1: iteration+=1 calculateThisGeneration() if everythingDone() or tooOld(iteration): break advanceGeneration() printParameters() def tooOld(iteration): if iteration>=MAX_ITERATION: raise "Too many iterations!"