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Background

• Phenotype

- The set of observable characteristics of an individual 
resulting from the interaction of its genotype with 
environment

- Phenotypes could be either disease phenotypes or any 
observable characteristics

Cancer Blond hair Eye color



Background

• Phenotype-genotype association

- Identify genetic variations affecting the phenotypic changes 
on a genome-scale

- What/How can genetic variation affect to develop 
phenotypes

Cancer Blond hair Eye color



Applications and Significance

• Understanding of how genome determines 
important phenotypes could lead to ...

- Find genes to develop new drug targets and treatments

- Genetic engineering of yeast ethanol

- Improve food production

- and more ...



Time and Cost of Drug Discovery 

• From Genentech

- Time: ~ 10 years

- Cost: ~ 2 billions (US dollors)

- Human resource: ~ 200 PhDs

- and more ...

‣ But, no guarantee that candidate drug will be approved by 
FDA



Traditional approach
• Phenotype-genotype association study

- Introduce genetic variations into model, and validate it in 
vivo and in vitro

[B Cho & B Palsson, “Probing the basis for genotype-phenotype relationships”, Nature methods 2009] 



Traditional approach
• Phenotype-genotype association study

- Introduce genetic variations into model, and validate it in 
vivo and in vitro

[B Cho & B Palsson, “Probing the basis for genotype-phenotype relationships”, Nature methods 2009] 

“Currently available genetic tools to establishing a 
connection between genotype and phenotype are 
Time consuming and Labor-intensive” 



High-throughput approach

• High-throughput technologies can improve the 
process of new drug development?

Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011; 17(3): 297-303. 
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current development of targeted cancer therapeutics. Highly prevalent, 
recurrent, activating mutations in melanoma, which is otherwise untreat-
able, immediately made BRAF attractive for therapeutic development. A 
remarkable eight years hence, the first fruits of these efforts have resulted 
in inhibitors of mutant BRAF, which in clinical trials show unprecedented 
activity in individuals with advanced stage metastatic melanoma whose 
tumors carry the p.V600E mutation16. This example serves as a paradigm 
for translation of cancer genomics from the identification of a new cancer 
gene to the treatment of cancers bearing that specific mutation (Fig. 1).

On the heels of BRAF, it was discovered that PIK3CA is frequently 
mutated in colorectal cancers17 and other tumor types, most notably in 
breast cancer where it is the most commonly mutated gene18,19. PIK3CA 
encodes the p110α catalytic subunit of PI(3)K, a lipid kinase that drives 
AKT signaling to support growth and survival. The discovery of activat-
ing PIK3CA mutations, together with the recurrent loss of the tumor 
suppressor PTEN, a negative regulator of PI(3)K, has motivated intensive 
drug development efforts targeting PIK3CA and its downstream signal-
ing molecules in diverse cancer types20. Unlike the prevalent BRAF V600 
mutation, the mutations that lead to oncogenic PI3KCA activation are 

lar mutations in the family members KRAS3–5 
and NRAS6 ushered in a new field of cancer 
research activity. The RAS family encodes small 
proteins with enzymatic GTPase activity that 
couple external growth signals to intracellular 
signaling cascades that govern proliferation and 
survival, which suggested that mutant cancer 
genes could provide reasonable therapeutic tar-
gets. However, the complexities and challenges 
of exploiting the knowledge of a cancer gene 
in a clinically meaningful way are exemplified 
by decades of intense pharmaceutical efforts 
to inhibit the oncogenic RAS-MAPK pathway 
either directly at the level of RAS7 or indirectly 
by inhibiting farnesyl- or geranyl-transferases 
(that is, preventing attachment of RAS to the 
cell membrane)8 or downstream at the level 
of the kinases MEK and ERK9. It is only now, 
three decades later, that KRAS mutation status 
is affecting cancer patient management—not as 
a drug target per se but rather as a ‘resistance 
marker’ of tumor responsiveness to anti-epider-
mal growth factor receptor (EGFR) therapies10 
(Table 1). Consequently, KRAS mutation testing 
is now recommended for patients with colon 
or lung cancer before EGFR-targeted therapies 
are initiated11–13. Moreover, RAS mutations 
are becoming logical ‘inclusion biomarkers’ 
for the enrollment of patients likely to benefit 
from pharmacological inhibition of the kinases 
MEK1 and 2 (ref. 9).

Since the early days of cancer genetic 
research, the discipline of cancer genomics 
(defined here as the simultaneous study of mul-
tiple types of genetic alteration) now influences 
virtually all aspects of cancer science. Building 
on the annotated reference human genome 
sequence, the first wave of systematic surveys 
for genome alterations in cancers analyzed the 
sequences of gene families in a relatively small 
series of human cancers, using a PCR-based 
exon-by-exon direct sequencing approach. 
These laborious and costly efforts concentrated on a highly ‘druggable’ 
class of genes, the protein and lipid kinases—a choice made compelling 
by the fact that kinase genes were overrepresented in the census of cancer 
genes14. This early phase of work led to the identification of two cancer 
genes that are now the subject of intense therapeutic development. BRAF 
mutations were identified in a mutational survey of select kinases, using 
a small number of cancer cell lines that had matching normal DNA15.
These mutations were also found in most malignant melanomas and 
were mainly comprised of a recurrent point mutation leading to substitu-
tion of glutamic acid for valine at residue 600 (p.V600E). Subsequently, 
V600 mutations were also identified in colorectal, thyroid, gall bladder 
and other cancers (http://www.sanger.ac.uk/genetics/CGP/cosmic/). 
BRAF, a cytoplasmic serine-threonine kinase, is central to the MAPK 
signaling cascade. It transduces growth factor signals by coupling with 
RAS proteins, leading to its phosphorylation and the subsequent down-
stream phosphorylation of MEK proteins. In addition to oncogenic 
receptor protein tyrosine kinases and the phosphatidylinositol 3-kinase 
(PI(3)K)-AKT-mTOR pathway, MAPK signaling, implicated by the 
first HRAS mutation, is perhaps the strongest central framework for the 
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Figure 1  Cancer genetics is accelerating the time from ‘driver mutation discovery’ to ‘clinical proof-
of-concept’ and the approval of new drugs. The historical timelines for developing targeted therapies 
discussed in the text are highlighted as examples. Gleevec received FDA approval long after the 
discovery of the Philadelphia chromosome mutation and hyperactive BCR-ABL protein in chronic 
myelogenous leukemia (CML). By contrast, the more recent discovery of chromosomal rearrangements 
(translocations) of ALK in NSCLC has rapidly translated into registration trials for Crizotinib, a ‘cMET-
turned-ALK’ inhibitor, based on tantalizing response rates in ALK-fusion-positive tumors (Phase I and 
II trial results)63. Likewise, the development paradigm for selective BRAF inhibitors, as exemplified 
by PLX4032, underlines the much faster pace of translation (8 years, compared with Gleevec or 
Herceptin) once the driver status (in this case BRAF mutations) had been established for an indication 
(malignant melanoma). Such accelerated development times are enabled by the broader body of 
knowledge of cancer biology and mechanisms of actions that have been generated in the cancer field 
(Fig. 2). The FDA approval of Herceptin and the accompanying diagnostic test for HER2 expression 
(HercepTest) proved the value of biomarker-driven trials that are informed by mechanistic insights 
gained from cancer genetics. In a similar vein, it is the functional understanding of DNA-repair 
mechanisms, and the role of BRCA1 and BRCA2 mutations in sensitizing tumors to PARP inhibition, 
that inform current registration trials of PARP inhibitors in BRCA-associated cancer types and patients 
that carry the BRCA mutation.
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Network-based approach

• Network-based approach can help to boost 
disease gene discovery 

- Disease gene and pathway discovery

- Next-generation sequencing data analysis

- Genomic data integration
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SUMMARY

Nephronophthisis (NPHP), Joubert (JBTS), and
Meckel-Gruber (MKS) syndromes are autosomal-
recessive ciliopathies presentingwith cystic kidneys,
retinal degeneration, and cerebellar/neural tube
malformation. Whether defects in kidney, retinal, or
neural disease primarily involve ciliary, Hedgehog,
or cell polarity pathways remains unclear. Using
high-confidence proteomics, we identified 850
interactors copurifying with nine NPHP/JBTS/MKS
proteins and discovered three connected modules:
‘‘NPHP1-4-8’’ functioning at the apical surface,
‘‘NPHP5-6’’ at centrosomes, and ‘‘MKS’’ linked to
Hedgehog signaling. Assays for ciliogenesis and
epithelial morphogenesis in 3D renal cultures link
renal cystic disease to apical organization defects,
whereas ciliary and Hedgehog pathway defects lead
to retinal or neural deficits. Using 38 interactors as
candidates, linkage and sequencing analysis of 250

patients identified ATXN10 and TCTN2 as new
NPHP-JBTS genes, and our Tctn2 mouse knockout
shows neural tube and Hedgehog signaling defects.
Our study further illustrates the power of linking pro-
teomic networks and human genetics to uncover
critical disease pathways.

INTRODUCTION

Ciliopathies are a heterogeneous group of diseases that present
with a broad constellation of clinical phenotypes, including renal
cysts, retinal degeneration, polydactyly, mental retardation, and
obesity (reviewed by Hildebrandt et al., 2009a; Zaghloul and
Katsanis, 2009). Studies of these diseases suggest that their
pathogenesis relates to dysfunction of the microtubule-based
primary cilium. It is hypothesized that the primary cilium is a
sensory organelle, acting as a mechanosensor in the kidney
and organizing sensory receptors, including rhodopsin, in the
retina. Cilia are also key components of the Hedgehog (Hh)
signaling pathway (Corbit et al., 2005; Huangfu et al., 2003).
The consistent finding of kidney, retinal, liver, limb, and brain
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SUMMARY

Systematic characterization of cancer genomes has
revealed a staggering number of diverse aberrations
that differ among individuals, such that the functional
importance and physiological impact of most tumor
genetic alterations remain poorly defined. We devel-
oped a computational framework that integrates
chromosomal copy number and gene expression
data for detecting aberrations that promote cancer
progression. We demonstrate the utility of this
framework using a melanoma data set. Our analysis
correctly identified known drivers of melanoma and
predicted multiple tumor dependencies. Two depen-
dencies, TBC1D16 and RAB27A, confirmed empiri-
cally, suggest that abnormal regulation of protein
trafficking contributes to proliferation in melanoma.
Together, these results demonstrate the ability of
integrative Bayesian approaches to identify candi-
date drivers with biological, and possibly thera-
peutic, importance in cancer.

INTRODUCTION

Large-scale initiatives to map chromosomal aberrations, muta-
tions, and gene expression have revealed a highly complex
assortment of genetic and transcriptional changes within indi-
vidual tumors. For example, copy number aberrations (CNAs)
occur frequently in cancer due to genomic instability. Genomic
data have been collected for thousands of tumors at high reso-
lution using array comparative genomic hybridization (aCGH)
(Pinkel et al., 1998), high-density single-nucleotide polymor-
phism (SNP) microarrays (Beroukhim et al., 2010; Lin et al.,
2008), and massively parallel sequencing (Pleasance et al.,
2010). Although multiple new genes have been implicated in
cancer through sequencing and CNA analysis (Garraway et al.,
2005), these studies have also revealed enormous diversity in
genomic aberrations in tumors among individuals. Each tumor
is unique and typically harbors a large number of genetic lesions,

of which only a few drive proliferation and metastasis. Thus,
identifying driver mutations (genetic changes that promote
cancer progression) and distinguishing them from passengers
(those with no selective advantage) has emerged as a major
challenge in the genomic characterization of cancer.
The most widely used approaches are based on the frequency

that an aberration occurs: if a mutation provides a fitness advan-
tage in a given tumor type, its persistencewill be favored, and it is
likely to be found in multiple tumors. For example, GISTIC iden-
tifies regions of the genome that are aberrant more often than
would be expected by chance and has been used to analyze
a number of cancers (Beroukhim et al., 2007, 2009; Lin et al.,
2008). However, there are limitations to analytical approaches
based on CNA data alone: CNA regions are typically large and
contain many genes, most of which are passengers that are
indistinguishable in copy number from the drivers. CNA data
have statistical power to detect only the most frequently recur-
ring drivers above the large number of unrelated chromosomal
aberrations that are typical in cancer. Finally, these approaches
rarely elucidate the functional importance or physiological
impact of the genetic alteration on the tumor. These limitations
highlight the need for new approaches that can integrate addi-
tional data to identify drivers of cancer. Gene expression is
readily available for many tumors, but how best to combine it
with information on CNA is not obvious.
We postulate that driver mutations coincide with a ‘‘genomic

footprint’’ in the form of a gene expression signature. We devel-
oped an algorithm that integrates chromosomal copy number
and gene expression data to find these signatures and identify
likely driver genes located in regions that are amplified or deleted
in tumors. Each potential driver gene is altered in some, but not
all, tumors and, when altered, is considered likely to play
a contributing role in tumorigenesis. Unique to our approach,
each driver is associated with a gene module, which is assumed
to be altered by the driver. We sometimes gain insight into the
likely role of a candidate driver based on the annotation of the
genes in the associated module. We demonstrate the utility of
our method using a data set (Lin et al., 2008) that includes paired
measurements of gene expression and copy number from 62
melanoma samples. Our analysis correctly identified known
drivers of melanoma and connected them to many of their
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Network-based approach
• Network-based approach can help to boost 

disease gene discovery 

- Disease gene prioritization

- Functional enrichment analysis

- and many (gene function prediction, drug target prediction, 
the pathological analysis of human disease)

Gene prioritization aims to identify the most promising 
genes (or proteins) among a larger pool of candidates 
through integrative computational analysis of public and 
private genomic data. Its goal is to maximize the yield 
and biological relevance of further downstream screens, 
validation experiments or functional studies by focusing 
on the most promising candidates. Bioinformatics tech-
niques for prioritization are useful at several stages of any 
gene-hunting process. These bioinformatics tools were 
initially developed to help to identify the disease-causing 
gene within a multigene locus that has been identified by a 
positional genetic study, as they allowed focusing the rese-
quencing of case and control samples on a few of the most 
likely candidate genes1–3. For instance, a linkage analysis 
on patients with anauxetic dysplasia identified a locus on 
9p13–p21 (REF. 4). Prioritization of the 77 genes from this 
locus using GeneSeeker5 pinpointed RNA component 
of mitochondrial RNA-processing endoribonuclease 
(RMRP) as a promising candidate, for which mutation 
in disease cases was then confirmed by sequencing4. 
Homozygosity mapping followed by mutation screening of 
the most promising candidates6–9 is another typical sce-
nario for gene prioritization. For instance, GeneDistiller10 
was used to prioritize 74 genes from a 2 Mb region on 
chromosome 17 that is associated with cardiac arryth-
mias, and a mutation in the top-ranking gene PTRF (also 
known as CAVIN) was found7. Similarly, Gentreprid11 
was used to prioritize the 200 genes from a 10 Mb locus 
on chromosome 17 that is associated with spondylocos-
tal dysostosis; a disease-specific variant within hairy and 
enhancer of split 7 (HES7) was then identified through 

sequencing6. Even in such simple scenarios, the task 
of identifying which genes from a given locus poten-
tially underlie a monogenic disease would be laborious 
without the automation provided by gene prioritization 
tools. Manually reviewing the literature and perusing 
public databases of functional annotation (such as Gene 
Ontology12 and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)13), sequence data (such as Ensembl14 
or the UCSC Genome Browser15) or expression data (such 
as ArrayExpress16 or Gene Expression Omnibus17) is a 
daunting task. Furthermore, prioritization methods have 
since proved to be applicable in many other situations, 
such as in more complex genetic studies of contiguous 
gene syndromes, genetic modifiers, acquired somatic 
mutations at multiple loci or genome-wide association 
studies (GWASs)18–21. For instance, using G2D22 identi-
fied 10 potential candidate genes for asthma, and a sub-
sequent association study of 91 SNPs in these genes found 
a variant in protein tyrosine phosphatase, receptor type E  
(PTPRE) that is associated with early-onset asthma23.

Beyond positional disease gene identification, gene 
prioritization can be used to identify promising candidates 
from many studies that generate gene lists, such as differ-
entially expressed genes from microarray or proteomics 
experiments or hits from RNAi screens or proteomics pull- 
down experiments. This broadening of applications 
is beginning to be reflected in the tools themselves: 
although the tools have a historical bias towards prior-
itization of human disease genes, methods are emerging 
that are tailored towards other applications, such as to  
select genes for a genetic screen in a model organism24.
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Most cellular components exert their functions through 
interactions with other cellular components, which can 
be located either in the same cell or across cells, and 
even across organs. In humans, the potential complexity 
of the resulting network — the human interactome — is 
daunting: with ~25,000 protein-coding genes, ~1,000 
metabolites and an undefined number of distinct  
proteins1 and functional RNA molecules, the number of 
cellular components that serve as the nodes of the inter-
actome easily exceeds 100,000. The number of function-
ally relevant interactions between the components of 
this network, representing the links of the interactome, 
is expected to be much larger2.

This inter- and intracellular interconnectivity implies 
that the impact of a specific genetic abnormality is not 
restricted to the activity of the gene product that carries 
it, but can spread along the links of the network and 
alter the activity of gene products that otherwise carry 
no defects. Therefore, an understanding of a gene’s net-
work context is essential in determining the phenotypic 
impact of defects that affect it3,4. Following on from this 
principle, a key hypothesis underlying this Review is 
that a disease phenotype is rarely a consequence of 
an abnormality in a single effector gene product, but 
reflects various pathobiological processes that inter-
act in a complex network. A corollary of this widely 
held hypothesis is that the interdependencies among 
a cell’s molecular components lead to deep functional, 
molecular and causal relationships among apparently  
distinct phenotypes.

Network-based approaches to human disease have 
multiple potential biological and clinical applications. A 
better understanding of the effects of cellular intercon-
nectedness on disease progression may lead to the iden-
tification of disease genes and disease pathways, which, 
in turn, may offer better targets for drug development. 
These advances may also lead to better and more accurate 
biomarkers to monitor the functional integrity of net-
works that are perturbed by diseases as well as to better  
disease classification. Here we present an overview of 
the organizing principles that govern cellular networks 
and the implications of these principles for understand-
ing disease. These principles and the tools and method-
ologies that are derived from them are facilitating the 
emergence of a body of knowledge that is increasingly 
referred to as network medicine5–7.

The human interactome
Although much of our understanding of cellular net-
works is derived from model organisms, the past dec-
ade has seen an exceptional growth in human-specific 
molecular interaction data8. Most attention has been 
directed towards molecular networks, including protein 
interaction networks, whose nodes are proteins that are 
linked to each other by physical (binding) interactions9,10; 
metabolic networks, whose nodes are metabolites that 
are linked if they participate in the same biochemi-
cal reactions11–13; regulatory networks, whose directed 
links represent either regulatory relationships between 
a transcription factor and a gene14, or post-translational 

*Center for Complex Networks 
Research and Department  
of Physics, Northeastern 
University, 110 Forsyth Street, 
111 Dana Research Center, 
Boston, Massachusetts 
02115, USA.
‡Center for Cancer Systems 
Biology, Dana-Farber Cancer 
Institute, 44 Binney Street, 
Boston, Massachusetts 
02115, USA.
§Department of Medicine, 
Brigham and Women’s 
Hospital, Harvard Medical 
School, 75 Francis Street, 
Boston, Massachusetts 
02115, USA.
||Department of Cellular and 
Molecular Pharmacology, 
University of California, 1700 
4th Street, Byers Hall 309, 
Box 2530, San Francisco,  
California 94158, USA.
Correspondence to A.-L.B.  
e-mail: alb@neu.edu
doi:10.1038/nrg2918

Network medicine: a network-based 
approach to human disease
Albert-László Barabási*‡§, Natali Gulbahce*‡|| and Joseph Loscalzo§

Abstract | Given the functional interdependencies between the molecular components in a 
human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects 
the perturbations of the complex intracellular and intercellular network that links tissue  
and organ systems. The emerging tools of network medicine offer a platform to explore 
systematically not only the molecular complexity of a particular disease, leading to the 
identification of disease modules and pathways, but also the molecular relationships among 
apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying 
new disease genes, for uncovering the biological significance of disease-associated  
mutations identified by genome-wide association studies and full-genome sequencing, and 
for identifying drug targets and biomarkers for complex diseases.

REVIEWS

56 | JANUARY 2011 | VOLUME 12  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved

Most cellular components exert their functions through 
interactions with other cellular components, which can 
be located either in the same cell or across cells, and 
even across organs. In humans, the potential complexity 
of the resulting network — the human interactome — is 
daunting: with ~25,000 protein-coding genes, ~1,000 
metabolites and an undefined number of distinct  
proteins1 and functional RNA molecules, the number of 
cellular components that serve as the nodes of the inter-
actome easily exceeds 100,000. The number of function-
ally relevant interactions between the components of 
this network, representing the links of the interactome, 
is expected to be much larger2.

This inter- and intracellular interconnectivity implies 
that the impact of a specific genetic abnormality is not 
restricted to the activity of the gene product that carries 
it, but can spread along the links of the network and 
alter the activity of gene products that otherwise carry 
no defects. Therefore, an understanding of a gene’s net-
work context is essential in determining the phenotypic 
impact of defects that affect it3,4. Following on from this 
principle, a key hypothesis underlying this Review is 
that a disease phenotype is rarely a consequence of 
an abnormality in a single effector gene product, but 
reflects various pathobiological processes that inter-
act in a complex network. A corollary of this widely 
held hypothesis is that the interdependencies among 
a cell’s molecular components lead to deep functional, 
molecular and causal relationships among apparently  
distinct phenotypes.

Network-based approaches to human disease have 
multiple potential biological and clinical applications. A 
better understanding of the effects of cellular intercon-
nectedness on disease progression may lead to the iden-
tification of disease genes and disease pathways, which, 
in turn, may offer better targets for drug development. 
These advances may also lead to better and more accurate 
biomarkers to monitor the functional integrity of net-
works that are perturbed by diseases as well as to better  
disease classification. Here we present an overview of 
the organizing principles that govern cellular networks 
and the implications of these principles for understand-
ing disease. These principles and the tools and method-
ologies that are derived from them are facilitating the 
emergence of a body of knowledge that is increasingly 
referred to as network medicine5–7.

The human interactome
Although much of our understanding of cellular net-
works is derived from model organisms, the past dec-
ade has seen an exceptional growth in human-specific 
molecular interaction data8. Most attention has been 
directed towards molecular networks, including protein 
interaction networks, whose nodes are proteins that are 
linked to each other by physical (binding) interactions9,10; 
metabolic networks, whose nodes are metabolites that 
are linked if they participate in the same biochemi-
cal reactions11–13; regulatory networks, whose directed 
links represent either regulatory relationships between 
a transcription factor and a gene14, or post-translational 

*Center for Complex Networks 
Research and Department  
of Physics, Northeastern 
University, 110 Forsyth Street, 
111 Dana Research Center, 
Boston, Massachusetts 
02115, USA.
‡Center for Cancer Systems 
Biology, Dana-Farber Cancer 
Institute, 44 Binney Street, 
Boston, Massachusetts 
02115, USA.
§Department of Medicine, 
Brigham and Women’s 
Hospital, Harvard Medical 
School, 75 Francis Street, 
Boston, Massachusetts 
02115, USA.
||Department of Cellular and 
Molecular Pharmacology, 
University of California, 1700 
4th Street, Byers Hall 309, 
Box 2530, San Francisco,  
California 94158, USA.
Correspondence to A.-L.B.  
e-mail: alb@neu.edu
doi:10.1038/nrg2918

Network medicine: a network-based 
approach to human disease
Albert-László Barabási*‡§, Natali Gulbahce*‡|| and Joseph Loscalzo§

Abstract | Given the functional interdependencies between the molecular components in a 
human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects 
the perturbations of the complex intracellular and intercellular network that links tissue  
and organ systems. The emerging tools of network medicine offer a platform to explore 
systematically not only the molecular complexity of a particular disease, leading to the 
identification of disease modules and pathways, but also the molecular relationships among 
apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying 
new disease genes, for uncovering the biological significance of disease-associated  
mutations identified by genome-wide association studies and full-genome sequencing, and 
for identifying drug targets and biomarkers for complex diseases.

REVIEWS

56 | JANUARY 2011 | VOLUME 12  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved

Leading Edge

Review

Interactome Networks and Human Disease
Marc Vidal,1,2,* Michael E. Cusick,1,2 and Albert-László Barabási1,3,4,*
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Complex biological systems and cellular networks may underlie most genotype to phenotype
relationships. Here, we review basic concepts in network biology, discussing different types of
interactome networks and the insights that can come from analyzing them. We elaborate on why
interactome networks are important to consider in biology, how they can bemapped and integrated
with each other, what global properties are starting to emerge from interactome network models,
and how these properties may relate to human disease.

Introduction
Since the advent of molecular biology, considerable progress
has been made in the quest to understand the mechanisms
that underlie human disease, particularly for genetically inherited
disorders. Genotype-phenotype relationships, as summarized in
the Online Mendelian Inheritance in Man (OMIM) database (Am-
berger et al., 2009), include mutations in more than 3000 human
genes known to be associated with one or more of over 2000
human disorders. This is a truly astounding number of geno-
type-phenotype relationships considering that a mere three
decades have passed since the initial description of Restriction
Fragment Length Polymorphisms (RFLPs) as molecular markers
to map genetic loci of interest (Botstein et al., 1980), only
two decades since the announcement of the first positional
cloning experiments of disease-associated genes using RFLPs
(Amberger et al., 2009), and just one decade since the release
of the first reference sequences of the human genome (Lander
et al., 2001; Venter et al., 2001). For complex traits, the informa-
tion gathered by recent genome-wide association studies
suggests high-confidence genotype-phenotype associations
between close to 1000 genomic loci and one or more of over
one hundred diseases, including diabetes, obesity, Crohn’s
disease, and hypertension (Altshuler et al., 2008). The discovery
of genomic variations involved in cancer, inherited in the germ-
line or acquired somatically, is equally striking, with hundreds
of human genes found linked to cancer (Stratton et al., 2009).
In light of new powerful technological developments such as
next-generation sequencing, it is easily imaginable that a catalog
of nearly all human genomic variations, whether deleterious,
advantageous, or neutral, will be available within our lifetime.

Despite the natural excitement emerging from such a huge
body of information, daunting challenges remain. Practically,
the genomic revolution has, thus far, seldom translated directly
into the development of new therapeutic strategies, and the
mechanisms underlying genotype-phenotype relationships
remain only partially explained. Assuming that, with time, most
human genotypic variations will be described together with

phenotypic associations, there would still be major problems
to fully understand andmodel human genetic variations and their
impact on diseases.
To understand why, consider the ‘‘one-gene/one-enzyme/

one-function’’ concept originally framed by Beadle and Tatum
(Beadle and Tatum, 1941), which holds that simple, linear
connections are expected between the genotype of an organism
and its phenotype. But the reality is that most genotype-pheno-
type relationships arise from a much higher underlying com-
plexity. Combinations of identical genotypes and nearly identical
environments do not always give rise to identical phenotypes.
The very coining of the words ‘‘genotype’’ and ‘‘phenotype’’ by
Johannsen more than a century ago derived from observations
that inbred isogenic lines of bean plants grown in well-controlled
environments give rise to pods of different size (Johannsen,
1909). Identical twins, although strikingly similar, nevertheless
often exhibit many differences (Raser and O’Shea, 2005). Like-
wise, genotypically indistinguishable bacterial or yeast cells
grown side by side can express different subsets of transcripts
and gene products at any given moment (Elowitz et al., 2002;
Blake et al., 2003; Taniguchi et al., 2010). Even straightforward
Mendelian traits are not immune to complex genotype-pheno-
type relationships. Incomplete penetrance, variable expressivity,
differences in age of onset, and modifier mutations are more
frequent than generally appreciated (Perlis et al., 2010).
We, along with others, argue that the way beyond these chal-

lenges is to decipher the properties of biological systems, and in
particular, those of molecular networks taking place within cells.
As is becoming increasingly clear, biological systems and
cellular networks are governed by specific laws and principles,
the understanding of which will be essential for a deeper com-
prehension of biology (Nurse, 2003; Vidal, 2009).
Accordingly, our goal is to review key aspects of how complex

systems operate inside cells. Particularly, we will review how by
interacting with each other, genes and their products form
complex networks within cells. Empirically determining and
modeling cellular networks for a few model organisms and for
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body of information, daunting challenges remain. Practically,
the genomic revolution has, thus far, seldom translated directly
into the development of new therapeutic strategies, and the
mechanisms underlying genotype-phenotype relationships
remain only partially explained. Assuming that, with time, most
human genotypic variations will be described together with

phenotypic associations, there would still be major problems
to fully understand andmodel human genetic variations and their
impact on diseases.
To understand why, consider the ‘‘one-gene/one-enzyme/

one-function’’ concept originally framed by Beadle and Tatum
(Beadle and Tatum, 1941), which holds that simple, linear
connections are expected between the genotype of an organism
and its phenotype. But the reality is that most genotype-pheno-
type relationships arise from a much higher underlying com-
plexity. Combinations of identical genotypes and nearly identical
environments do not always give rise to identical phenotypes.
The very coining of the words ‘‘genotype’’ and ‘‘phenotype’’ by
Johannsen more than a century ago derived from observations
that inbred isogenic lines of bean plants grown in well-controlled
environments give rise to pods of different size (Johannsen,
1909). Identical twins, although strikingly similar, nevertheless
often exhibit many differences (Raser and O’Shea, 2005). Like-
wise, genotypically indistinguishable bacterial or yeast cells
grown side by side can express different subsets of transcripts
and gene products at any given moment (Elowitz et al., 2002;
Blake et al., 2003; Taniguchi et al., 2010). Even straightforward
Mendelian traits are not immune to complex genotype-pheno-
type relationships. Incomplete penetrance, variable expressivity,
differences in age of onset, and modifier mutations are more
frequent than generally appreciated (Perlis et al., 2010).
We, along with others, argue that the way beyond these chal-

lenges is to decipher the properties of biological systems, and in
particular, those of molecular networks taking place within cells.
As is becoming increasingly clear, biological systems and
cellular networks are governed by specific laws and principles,
the understanding of which will be essential for a deeper com-
prehension of biology (Nurse, 2003; Vidal, 2009).
Accordingly, our goal is to review key aspects of how complex

systems operate inside cells. Particularly, we will review how by
interacting with each other, genes and their products form
complex networks within cells. Empirically determining and
modeling cellular networks for a few model organisms and for
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1909). Identical twins, although strikingly similar, nevertheless
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and gene products at any given moment (Elowitz et al., 2002;
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ABSTRACT
Motivation: To validate the candidate disease genes identified from
high-throughput genomic studies, a necessary step is to elucidate
the associations between the set of candidate genes and disease
phenotypes. The conventional gene set enrichment analysis often
fails to reveal associations between disease phenotypes and the
gene sets with a short list of poorly annotated genes, because
the existing annotations of disease-causative genes are incomplete.
This article introduces a network-based computational approach
called rcNet to discover the associations between gene sets and
disease phenotypes. A learning framework is proposed to maximize
the coherence between the predicted phenotype–gene set relations
and the known disease phenotype-gene associations. An efficient
algorithm coupling ridge regression with label propagation and two
variants are designed to find the optimal solution to the objective
functions of the learning framework.
Results: We evaluated the rcNet algorithms with leave-one-out
cross-validation on Online Mendelian Inheritance in Man (OMIM) data
and an independent test set of recently discovered disease–gene
associations. In the experiments, the rcNet algorithms achieved best
overall rankings compared with the baselines. To further validate
the reproducibility of the performance, we applied the algorithms
to identify the target diseases of novel candidate disease genes
obtained from recent studies of Genome-Wide Association Study
(GWAS), DNA copy number variation analysis and gene expression
profiling. The algorithms ranked the target disease of the candidate
genes at the top of the rank list in many cases across all the three
case studies.
Availability: http://compbio.cs.umn.edu/dgsa_rcNet
Contact: kuang@cs.umn.edu
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1 INTRODUCTION
Determination of the molecular cause of diseases is a major focus in
genomics research since early 1960s (McKusick, 2007). Recently,
powered by the advanced high-throughput genomic technologies,
numerous large-scale genome-wide disease studies such as genome-
wide association studies (Johnson and O’Donnell, 2009; The
Wellcome Trust Case Control Consortium, 2007), DNA copy

∗To whom correspondence should be addressed.

number detections (Shlien and Malkin, 2009) and gene expression
profiling (van’t Veer and Bernards, 2008) were conducted toward
this goal. Typically, the objective of a study is to perform a high-
throughput scanning for a list of genes that are involved with the
disease under study, and then a standard follow-up enrichment
analysis or its variants and extensions is applied to analyze the gene
set, based on the statistical significance of the overlap between the
genes and gene functional annotations or associations with disease
phenotypes. Examples of the well-known tools are DAVID (Huang
et al., 2009), GSEA (Subramanian et al., 2005), GOToolBox (Martin
et al., 2004) and many others. However, in many cases, since the
existing annotations of disease-causative genes is far from complete
(McKusick, 2007), and a gene set might only contain a short list of
poorly annotated genes, enrichment-based approaches often fail to
reveal the associations between gene sets and disease phenotypes.

The availability of large phenotypic and molecular networks
provides a new opportunity to study the association between diseases
and the gene sets identified from the high-throughput genomic
studies. The human disease phenotype network (van Driel et al.,
2006) provides information on phenotype similarities computed by
text mining of the full text and clinical synopsis of the disease
phenotypes in OMIM (McKusick, 2007). Large molecular networks
such as the human protein–protein interaction network (Chuang
et al., 2007) or functional linkage network (Linghu et al., 2009)
provide functional relations among genes or proteins. Based on the
observation that genes associated with the same or related diseases
tend to interact with each other in the gene network, many network-
based approaches are proposed to utilize the disease modules and
gene modules in the networks to prioritize disease genes, a task of
ranking genes for studying genetic diseases (Franke et al., 2006;
Hwang and Kuang, 2010; Köhler et al., 2008; Linghu et al., 2009;
Li and Patra, 2010; Vanunu et al., 2010; Wu et al., 2008).

In this article, we propose a general network-based approach
to infer associations between disease phenotypes and gene sets,
utilizing the disease phenotype network and the gene network. We
formulate the problem as a gene set query problem. By querying the
networks with a given gene set, a user expects to retrieve a list of
disease phenotypes with the highest predicted association with the
gene set. The principle is that, if genes are ranked by their relevance
to the query gene set, and disease phenotypes are ranked by their
relevance to the hidden target disease phenotypes of the query
gene set, the known associations between the most relevant genes
and phenotypes tend to be over-represented compared with random
cases. We formulate a simple learning framework maximizing Rank
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Guilt by association
A statistical rule of thumb that 
asserts that reliable predictions 
about the function or disease 
involvement (‘guilt’) of a gene 
or protein can generally be 
made if several of its partners 
(for example, genes with 
correlated expression profiles 
or protein–protein interaction 
partners) share a corresponding 
‘guilty’ status (‘association’).

Gene prioritization methods (BOX 1) typically involve 
two inputs: a list of candidate genes for prioritization and 
the criteria for prioritization, such as for the involvement 
in a particular disease or cellular process. These prior-
itization criteria are typically in the form of biological 
keywords or a set of ‘seed’ genes (also known as training 
genes) that are already linked to that disease or process. 
The methods are based on the well-established concept 
of guilt by association25,26, (see REF. 27 for a review on the 
use of guilt by association in the context of disease gene 

discovery). They query databases that contain webs of sim-
ple relations between genes or proteins (such as protein– 
protein interaction (PPI) data28) to discover unexplored 
relations between those entities. Thus, genes can be pri-
oritized on the basis of putative links to other genes that 
have more established roles in the disease or process of 
interest. For example, a gene could be prioritized for a 
role in a disease if PPI data show that its protein product 
is found in a multiprotein complex with other proteins in 
which some mutations are known to cause the disease or 

Box 1 | Gene prioritization workflow

The first step in gene prioritization consists of building the list of candidate genes to prioritize. Typical lists come from 

linkage regions, chromosomal aberrations, association study loci, differentially expressed gene lists or genes identified by 

sequencing variants. Alternatively, the complete genome can be prioritized, but substantially more false positives would 

then be expected. Step two consists of collecting prior knowledge about the disease, in the form of seed genes  

(known disease genes) or disease-relevant keywords, through knowledge bases or text-mining tools that collect data 

about diseases or biological processes. For seed genes, it is essential to review each gene across such databases or to  

use expert knowledge to make sure that it is truly relevant. Also, if the set contains too few genes, the pattern will be 

insufficiently informative, whereas if the set is too large, the pattern will often be molecularly too heterogeneous to  

be useful. In our experience, good sets of seed genes contain between 5 and 30 genes. Step three consists of selecting 

prioritization methods that best match the specific task (BOX 3). In some cases, little or no prior knowledge is available, 

and in these cases seed genes cannot be readily collected, and only some methods remain applicable (see the main text). 

Step four is the crucial step of assessing whether the selected seed genes, keywords and tools are suitable and whether 

reliable predictions can be expected. Cross-validation makes it possible to assess whether a set of seed genes provides a 

coherent pattern (see the ‘Statistical benchmarking by cross-validation’ section of the main text). It is also advisable to 

create multiple sets of seed genes or keywords covering complementary phenotypic aspects of the disease and to assess 

their performance separately. In step five, the actual prioritization takes place, possibly using multiple tools or multiple 

sets of seed gene or keywords. These results can also be combined hierarchically to obtain a consensus result (see 

‘Carrying out complex strategies’ in the main text). At this stage, an optional step is to perform a quality assessment of the 

global prioritization results to make sure that they are relevant (step six): for example, using functional enrichment (see 

‘Other quality-control methods’ in the main text). Finally, step seven consists of interpreting the results using the 

prioritization tools themselves or other third-party tools to identify relations between candidate genes and known 

disease genes to guide the final the selection of genes for experimental validation. For instance, if a top-ranking gene 

contains variants that are associated with phenotypically related disorders or to relevant traits in animal models, this 

provides strong support for a candidate. Also, confirmed or predicted physical binding between the products of a seed 

gene and a top-ranking candidate will immediately direct the validation experiment.
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(for example, genes with 
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partners) share a corresponding 
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Gene prioritization methods (BOX 1) typically involve 
two inputs: a list of candidate genes for prioritization and 
the criteria for prioritization, such as for the involvement 
in a particular disease or cellular process. These prior-
itization criteria are typically in the form of biological 
keywords or a set of ‘seed’ genes (also known as training 
genes) that are already linked to that disease or process. 
The methods are based on the well-established concept 
of guilt by association25,26, (see REF. 27 for a review on the 
use of guilt by association in the context of disease gene 

discovery). They query databases that contain webs of sim-
ple relations between genes or proteins (such as protein– 
protein interaction (PPI) data28) to discover unexplored 
relations between those entities. Thus, genes can be pri-
oritized on the basis of putative links to other genes that 
have more established roles in the disease or process of 
interest. For example, a gene could be prioritized for a 
role in a disease if PPI data show that its protein product 
is found in a multiprotein complex with other proteins in 
which some mutations are known to cause the disease or 

Box 1 | Gene prioritization workflow

The first step in gene prioritization consists of building the list of candidate genes to prioritize. Typical lists come from 

linkage regions, chromosomal aberrations, association study loci, differentially expressed gene lists or genes identified by 

sequencing variants. Alternatively, the complete genome can be prioritized, but substantially more false positives would 

then be expected. Step two consists of collecting prior knowledge about the disease, in the form of seed genes  

(known disease genes) or disease-relevant keywords, through knowledge bases or text-mining tools that collect data 

about diseases or biological processes. For seed genes, it is essential to review each gene across such databases or to  

use expert knowledge to make sure that it is truly relevant. Also, if the set contains too few genes, the pattern will be 

insufficiently informative, whereas if the set is too large, the pattern will often be molecularly too heterogeneous to  

be useful. In our experience, good sets of seed genes contain between 5 and 30 genes. Step three consists of selecting 

prioritization methods that best match the specific task (BOX 3). In some cases, little or no prior knowledge is available, 

and in these cases seed genes cannot be readily collected, and only some methods remain applicable (see the main text). 

Step four is the crucial step of assessing whether the selected seed genes, keywords and tools are suitable and whether 

reliable predictions can be expected. Cross-validation makes it possible to assess whether a set of seed genes provides a 

coherent pattern (see the ‘Statistical benchmarking by cross-validation’ section of the main text). It is also advisable to 

create multiple sets of seed genes or keywords covering complementary phenotypic aspects of the disease and to assess 

their performance separately. In step five, the actual prioritization takes place, possibly using multiple tools or multiple 

sets of seed gene or keywords. These results can also be combined hierarchically to obtain a consensus result (see 

‘Carrying out complex strategies’ in the main text). At this stage, an optional step is to perform a quality assessment of the 

global prioritization results to make sure that they are relevant (step six): for example, using functional enrichment (see 

‘Other quality-control methods’ in the main text). Finally, step seven consists of interpreting the results using the 

prioritization tools themselves or other third-party tools to identify relations between candidate genes and known 

disease genes to guide the final the selection of genes for experimental validation. For instance, if a top-ranking gene 

contains variants that are associated with phenotypically related disorders or to relevant traits in animal models, this 

provides strong support for a candidate. Also, confirmed or predicted physical binding between the products of a seed 

gene and a top-ranking candidate will immediately direct the validation experiment.
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involvement (‘guilt’) of a gene 
or protein can generally be 
made if several of its partners 
(for example, genes with 
correlated expression profiles 
or protein–protein interaction 
partners) share a corresponding 
‘guilty’ status (‘association’).

Gene prioritization methods (BOX 1) typically involve 
two inputs: a list of candidate genes for prioritization and 
the criteria for prioritization, such as for the involvement 
in a particular disease or cellular process. These prior-
itization criteria are typically in the form of biological 
keywords or a set of ‘seed’ genes (also known as training 
genes) that are already linked to that disease or process. 
The methods are based on the well-established concept 
of guilt by association25,26, (see REF. 27 for a review on the 
use of guilt by association in the context of disease gene 

discovery). They query databases that contain webs of sim-
ple relations between genes or proteins (such as protein– 
protein interaction (PPI) data28) to discover unexplored 
relations between those entities. Thus, genes can be pri-
oritized on the basis of putative links to other genes that 
have more established roles in the disease or process of 
interest. For example, a gene could be prioritized for a 
role in a disease if PPI data show that its protein product 
is found in a multiprotein complex with other proteins in 
which some mutations are known to cause the disease or 

Box 1 | Gene prioritization workflow

The first step in gene prioritization consists of building the list of candidate genes to prioritize. Typical lists come from 

linkage regions, chromosomal aberrations, association study loci, differentially expressed gene lists or genes identified by 

sequencing variants. Alternatively, the complete genome can be prioritized, but substantially more false positives would 

then be expected. Step two consists of collecting prior knowledge about the disease, in the form of seed genes  

(known disease genes) or disease-relevant keywords, through knowledge bases or text-mining tools that collect data 

about diseases or biological processes. For seed genes, it is essential to review each gene across such databases or to  

use expert knowledge to make sure that it is truly relevant. Also, if the set contains too few genes, the pattern will be 

insufficiently informative, whereas if the set is too large, the pattern will often be molecularly too heterogeneous to  

be useful. In our experience, good sets of seed genes contain between 5 and 30 genes. Step three consists of selecting 

prioritization methods that best match the specific task (BOX 3). In some cases, little or no prior knowledge is available, 

and in these cases seed genes cannot be readily collected, and only some methods remain applicable (see the main text). 

Step four is the crucial step of assessing whether the selected seed genes, keywords and tools are suitable and whether 

reliable predictions can be expected. Cross-validation makes it possible to assess whether a set of seed genes provides a 

coherent pattern (see the ‘Statistical benchmarking by cross-validation’ section of the main text). It is also advisable to 

create multiple sets of seed genes or keywords covering complementary phenotypic aspects of the disease and to assess 

their performance separately. In step five, the actual prioritization takes place, possibly using multiple tools or multiple 

sets of seed gene or keywords. These results can also be combined hierarchically to obtain a consensus result (see 

‘Carrying out complex strategies’ in the main text). At this stage, an optional step is to perform a quality assessment of the 
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‘Other quality-control methods’ in the main text). Finally, step seven consists of interpreting the results using the 

prioritization tools themselves or other third-party tools to identify relations between candidate genes and known 

disease genes to guide the final the selection of genes for experimental validation. For instance, if a top-ranking gene 

contains variants that are associated with phenotypically related disorders or to relevant traits in animal models, this 

provides strong support for a candidate. Also, confirmed or predicted physical binding between the products of a seed 

gene and a top-ranking candidate will immediately direct the validation experiment.
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Guilt by association
A statistical rule of thumb that 
asserts that reliable predictions 
about the function or disease 
involvement (‘guilt’) of a gene 
or protein can generally be 
made if several of its partners 
(for example, genes with 
correlated expression profiles 
or protein–protein interaction 
partners) share a corresponding 
‘guilty’ status (‘association’).

Gene prioritization methods (BOX 1) typically involve 
two inputs: a list of candidate genes for prioritization and 
the criteria for prioritization, such as for the involvement 
in a particular disease or cellular process. These prior-
itization criteria are typically in the form of biological 
keywords or a set of ‘seed’ genes (also known as training 
genes) that are already linked to that disease or process. 
The methods are based on the well-established concept 
of guilt by association25,26, (see REF. 27 for a review on the 
use of guilt by association in the context of disease gene 

discovery). They query databases that contain webs of sim-
ple relations between genes or proteins (such as protein– 
protein interaction (PPI) data28) to discover unexplored 
relations between those entities. Thus, genes can be pri-
oritized on the basis of putative links to other genes that 
have more established roles in the disease or process of 
interest. For example, a gene could be prioritized for a 
role in a disease if PPI data show that its protein product 
is found in a multiprotein complex with other proteins in 
which some mutations are known to cause the disease or 

Box 1 | Gene prioritization workflow

The first step in gene prioritization consists of building the list of candidate genes to prioritize. Typical lists come from 

linkage regions, chromosomal aberrations, association study loci, differentially expressed gene lists or genes identified by 

sequencing variants. Alternatively, the complete genome can be prioritized, but substantially more false positives would 

then be expected. Step two consists of collecting prior knowledge about the disease, in the form of seed genes  

(known disease genes) or disease-relevant keywords, through knowledge bases or text-mining tools that collect data 

about diseases or biological processes. For seed genes, it is essential to review each gene across such databases or to  

use expert knowledge to make sure that it is truly relevant. Also, if the set contains too few genes, the pattern will be 

insufficiently informative, whereas if the set is too large, the pattern will often be molecularly too heterogeneous to  

be useful. In our experience, good sets of seed genes contain between 5 and 30 genes. Step three consists of selecting 

prioritization methods that best match the specific task (BOX 3). In some cases, little or no prior knowledge is available, 

and in these cases seed genes cannot be readily collected, and only some methods remain applicable (see the main text). 

Step four is the crucial step of assessing whether the selected seed genes, keywords and tools are suitable and whether 

reliable predictions can be expected. Cross-validation makes it possible to assess whether a set of seed genes provides a 

coherent pattern (see the ‘Statistical benchmarking by cross-validation’ section of the main text). It is also advisable to 

create multiple sets of seed genes or keywords covering complementary phenotypic aspects of the disease and to assess 

their performance separately. In step five, the actual prioritization takes place, possibly using multiple tools or multiple 

sets of seed gene or keywords. These results can also be combined hierarchically to obtain a consensus result (see 

‘Carrying out complex strategies’ in the main text). At this stage, an optional step is to perform a quality assessment of the 

global prioritization results to make sure that they are relevant (step six): for example, using functional enrichment (see 

‘Other quality-control methods’ in the main text). Finally, step seven consists of interpreting the results using the 

prioritization tools themselves or other third-party tools to identify relations between candidate genes and known 

disease genes to guide the final the selection of genes for experimental validation. For instance, if a top-ranking gene 

contains variants that are associated with phenotypically related disorders or to relevant traits in animal models, this 

provides strong support for a candidate. Also, confirmed or predicted physical binding between the products of a seed 

gene and a top-ranking candidate will immediately direct the validation experiment.
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Data driven method

• Endeavour

- Input: known genes (training), a set of candidate disease 
genes

- Output: a list of ranked candidate genes

S. Aerts et al., Gene prioritization through genomic data fusion , Nat biotechnology 2006



Endeavour workflow
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Validation of Endeavour when accessing individual data sources
For each individual data source, we assessed whether our approach is 
capable of prioritizing genes known to be involved in specific diseases 
or receptor signaling pathways. To this end, we performed a large-scale 
leave-one-out cross-validation. In each validation run, one gene, termed 
the ‘defector’ gene, was deleted from a set of training genes and added 
to 99 randomly selected test genes. The software then determined the 
ranking of this defector gene for every data source separately. We used 
627 training genes, ordered in 29 training sets of particular diseases 

automatically selected from the Online Mendelian Inheritance In Man 
(OMIM) database (see Supplementary Notes online for selection pro-
cedure). For pathway genes, we compiled three sets of training genes 
involved in the WNT (43 genes), NOTCH (18 genes) and epidermal 
growth factor (15 genes) pathways. As a negative control for training 
genes, we assembled 10 sets of 20 randomly selected genes.

Thus, a total of 903 prioritizations (627 for the disease genes, 76 for 
the pathway genes and 200 for the random sets) were performed for 
each data source. From these, we calculated sensitivity and specificity 
values. Sensitivity refers to the frequency (% of all prioritizations) of 
defector genes that are ranked above a particular threshold position. 
Specificity refers to the percentage of genes ranked below this threshold. 
For instance, a sensitivity/specificity value of 70/90 would indicate that 
the correct disease gene was ranked among the best-scoring 10% of 
genes in 70% of the prioritizations. To allow comparison between data 
sources we plotted rank receiver operating characteristic (ROC) curves, 
from which sensitivity/specificity values can be easily deduced. The area 
under this curve (AUC) is a standard measure of the performance of 
this algorithm. For instance, an AUC-value of 100% indicates that every 
defector gene ranked first, whereas a value of 50% means that the defec-
tor genes ranked randomly.

For every single data source, Endeavour reached a higher AUC score 
for disease and pathway genes than for randomly selected genes, indi-
cating that it was sensitive and specific in ranking the defector gene, 
regardless of the type of data source consulted (Fig. 2). Not surprisingly, 
the data sources differed in their usefulness and suitability to rank genes 
(Supplementary Notes).

Overall prioritization by fusing multiple data sources
Although in most cases the defector gene ranked high in the prioritiza-
tion list, this was not always the case (Supplementary Fig. 1 online). 
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Figure 1  Concept of prioritization by Endeavour. Candidate test genes 
are ranked with Endeavour based on their similarity with a set of known 
training genes in a three-step analysis. In the first step (upper panel), 
information about a disease or pathway is gathered from a set of known 
training genes by consulting various data sources. Training genes can be 
loaded automatically (based on a Gene Ontology term, a KEGG pathway ID 
or an OMIM disease name) or manually. The latter allows the incorporation 
of expert knowledge. The following data sources are used: A, literature 
(abstracts in EntrezGene); B, functional annotation (Gene Ontology);
C, microarray expression (Atlas gene expression); D, EST expression
(EST data from Ensembl); E, protein domains (InterPro); F, protein-protein 
interactions (Biomolecular Interaction Network Database or BIND);
G, pathway membership (Kyoto Encyclopedia of Genes and Genomes or 
KEGG); H, cis-regulatory modules (TOUCAN); I, transcriptional motifs 
(TRANSFAC); J, sequence similarity (BLAST); K, additional data sources, 
which can be added (e.g., disease probabilities). In the second step (middle 
panel), a set of test genes is loaded (again, either manually or automatically 
by querying for a chromosomal region or for markers). These test genes are 
then ranked based on their similarity with the training properties obtained 
in the first step, which results in one prioritized list for each data source. 
Vector-based data are scored by the Pearson correlation between a test 
profile and the training average, whereas attribute-based data are scored 
by a Fisher’s omnibus analysis on statistically overrepresented training 
attributes. Finally, in the third step (lower panel), Endeavour fuses each 
of these rankings from the separate data sources into a single ranking and 
provides an overall prioritization for each test gene. As such, Endeavour 
prioritizes genes through genomic data fusion—a term, borrowed from 
engineering to reflect the merging of distinct heterogeneous data sources, 
even when they differ in their conceptual, contextual and typographical 
representations.
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Figure 2  Cross-validation results. The AUC values obtained for all individual 
data sources are shown for disease prioritizations (black), pathway 
prioritizations (dark gray) and random prioritizations (light gray). The AUC 
values from the overall prioritization obtained after fusing all individual 
prioritizations are also shown.
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Validation of Endeavour when accessing individual data sources
For each individual data source, we assessed whether our approach is 
capable of prioritizing genes known to be involved in specific diseases 
or receptor signaling pathways. To this end, we performed a large-scale 
leave-one-out cross-validation. In each validation run, one gene, termed 
the ‘defector’ gene, was deleted from a set of training genes and added 
to 99 randomly selected test genes. The software then determined the 
ranking of this defector gene for every data source separately. We used 
627 training genes, ordered in 29 training sets of particular diseases 

automatically selected from the Online Mendelian Inheritance In Man 
(OMIM) database (see Supplementary Notes online for selection pro-
cedure). For pathway genes, we compiled three sets of training genes 
involved in the WNT (43 genes), NOTCH (18 genes) and epidermal 
growth factor (15 genes) pathways. As a negative control for training 
genes, we assembled 10 sets of 20 randomly selected genes.

Thus, a total of 903 prioritizations (627 for the disease genes, 76 for 
the pathway genes and 200 for the random sets) were performed for 
each data source. From these, we calculated sensitivity and specificity 
values. Sensitivity refers to the frequency (% of all prioritizations) of 
defector genes that are ranked above a particular threshold position. 
Specificity refers to the percentage of genes ranked below this threshold. 
For instance, a sensitivity/specificity value of 70/90 would indicate that 
the correct disease gene was ranked among the best-scoring 10% of 
genes in 70% of the prioritizations. To allow comparison between data 
sources we plotted rank receiver operating characteristic (ROC) curves, 
from which sensitivity/specificity values can be easily deduced. The area 
under this curve (AUC) is a standard measure of the performance of 
this algorithm. For instance, an AUC-value of 100% indicates that every 
defector gene ranked first, whereas a value of 50% means that the defec-
tor genes ranked randomly.

For every single data source, Endeavour reached a higher AUC score 
for disease and pathway genes than for randomly selected genes, indi-
cating that it was sensitive and specific in ranking the defector gene, 
regardless of the type of data source consulted (Fig. 2). Not surprisingly, 
the data sources differed in their usefulness and suitability to rank genes 
(Supplementary Notes).

Overall prioritization by fusing multiple data sources
Although in most cases the defector gene ranked high in the prioritiza-
tion list, this was not always the case (Supplementary Fig. 1 online). 
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Figure 1  Concept of prioritization by Endeavour. Candidate test genes 
are ranked with Endeavour based on their similarity with a set of known 
training genes in a three-step analysis. In the first step (upper panel), 
information about a disease or pathway is gathered from a set of known 
training genes by consulting various data sources. Training genes can be 
loaded automatically (based on a Gene Ontology term, a KEGG pathway ID 
or an OMIM disease name) or manually. The latter allows the incorporation 
of expert knowledge. The following data sources are used: A, literature 
(abstracts in EntrezGene); B, functional annotation (Gene Ontology);
C, microarray expression (Atlas gene expression); D, EST expression
(EST data from Ensembl); E, protein domains (InterPro); F, protein-protein 
interactions (Biomolecular Interaction Network Database or BIND);
G, pathway membership (Kyoto Encyclopedia of Genes and Genomes or 
KEGG); H, cis-regulatory modules (TOUCAN); I, transcriptional motifs 
(TRANSFAC); J, sequence similarity (BLAST); K, additional data sources, 
which can be added (e.g., disease probabilities). In the second step (middle 
panel), a set of test genes is loaded (again, either manually or automatically 
by querying for a chromosomal region or for markers). These test genes are 
then ranked based on their similarity with the training properties obtained 
in the first step, which results in one prioritized list for each data source. 
Vector-based data are scored by the Pearson correlation between a test 
profile and the training average, whereas attribute-based data are scored 
by a Fisher’s omnibus analysis on statistically overrepresented training 
attributes. Finally, in the third step (lower panel), Endeavour fuses each 
of these rankings from the separate data sources into a single ranking and 
provides an overall prioritization for each test gene. As such, Endeavour 
prioritizes genes through genomic data fusion—a term, borrowed from 
engineering to reflect the merging of distinct heterogeneous data sources, 
even when they differ in their conceptual, contextual and typographical 
representations.
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Figure 2  Cross-validation results. The AUC values obtained for all individual 
data sources are shown for disease prioritizations (black), pathway 
prioritizations (dark gray) and random prioritizations (light gray). The AUC 
values from the overall prioritization obtained after fusing all individual 
prioritizations are also shown.
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Validation of Endeavour when accessing individual data sources
For each individual data source, we assessed whether our approach is 
capable of prioritizing genes known to be involved in specific diseases 
or receptor signaling pathways. To this end, we performed a large-scale 
leave-one-out cross-validation. In each validation run, one gene, termed 
the ‘defector’ gene, was deleted from a set of training genes and added 
to 99 randomly selected test genes. The software then determined the 
ranking of this defector gene for every data source separately. We used 
627 training genes, ordered in 29 training sets of particular diseases 

automatically selected from the Online Mendelian Inheritance In Man 
(OMIM) database (see Supplementary Notes online for selection pro-
cedure). For pathway genes, we compiled three sets of training genes 
involved in the WNT (43 genes), NOTCH (18 genes) and epidermal 
growth factor (15 genes) pathways. As a negative control for training 
genes, we assembled 10 sets of 20 randomly selected genes.

Thus, a total of 903 prioritizations (627 for the disease genes, 76 for 
the pathway genes and 200 for the random sets) were performed for 
each data source. From these, we calculated sensitivity and specificity 
values. Sensitivity refers to the frequency (% of all prioritizations) of 
defector genes that are ranked above a particular threshold position. 
Specificity refers to the percentage of genes ranked below this threshold. 
For instance, a sensitivity/specificity value of 70/90 would indicate that 
the correct disease gene was ranked among the best-scoring 10% of 
genes in 70% of the prioritizations. To allow comparison between data 
sources we plotted rank receiver operating characteristic (ROC) curves, 
from which sensitivity/specificity values can be easily deduced. The area 
under this curve (AUC) is a standard measure of the performance of 
this algorithm. For instance, an AUC-value of 100% indicates that every 
defector gene ranked first, whereas a value of 50% means that the defec-
tor genes ranked randomly.

For every single data source, Endeavour reached a higher AUC score 
for disease and pathway genes than for randomly selected genes, indi-
cating that it was sensitive and specific in ranking the defector gene, 
regardless of the type of data source consulted (Fig. 2). Not surprisingly, 
the data sources differed in their usefulness and suitability to rank genes 
(Supplementary Notes).

Overall prioritization by fusing multiple data sources
Although in most cases the defector gene ranked high in the prioritiza-
tion list, this was not always the case (Supplementary Fig. 1 online). 
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Figure 1  Concept of prioritization by Endeavour. Candidate test genes 
are ranked with Endeavour based on their similarity with a set of known 
training genes in a three-step analysis. In the first step (upper panel), 
information about a disease or pathway is gathered from a set of known 
training genes by consulting various data sources. Training genes can be 
loaded automatically (based on a Gene Ontology term, a KEGG pathway ID 
or an OMIM disease name) or manually. The latter allows the incorporation 
of expert knowledge. The following data sources are used: A, literature 
(abstracts in EntrezGene); B, functional annotation (Gene Ontology);
C, microarray expression (Atlas gene expression); D, EST expression
(EST data from Ensembl); E, protein domains (InterPro); F, protein-protein 
interactions (Biomolecular Interaction Network Database or BIND);
G, pathway membership (Kyoto Encyclopedia of Genes and Genomes or 
KEGG); H, cis-regulatory modules (TOUCAN); I, transcriptional motifs 
(TRANSFAC); J, sequence similarity (BLAST); K, additional data sources, 
which can be added (e.g., disease probabilities). In the second step (middle 
panel), a set of test genes is loaded (again, either manually or automatically 
by querying for a chromosomal region or for markers). These test genes are 
then ranked based on their similarity with the training properties obtained 
in the first step, which results in one prioritized list for each data source. 
Vector-based data are scored by the Pearson correlation between a test 
profile and the training average, whereas attribute-based data are scored 
by a Fisher’s omnibus analysis on statistically overrepresented training 
attributes. Finally, in the third step (lower panel), Endeavour fuses each 
of these rankings from the separate data sources into a single ranking and 
provides an overall prioritization for each test gene. As such, Endeavour 
prioritizes genes through genomic data fusion—a term, borrowed from 
engineering to reflect the merging of distinct heterogeneous data sources, 
even when they differ in their conceptual, contextual and typographical 
representations.

    
Ove

ra
ll

pr
ior

itiz
ati

on

Micr
oa

rra
y

BIN
D

BLA
ST

cis
-re

gu
lat

or
y

mod
ule

s EST GO

Int
er

Pro

KEGG

Tra
ns

cri
pti

on

moti
fs

Lit
er

atu
re

0

20

40

60

80

100
OMIM diseases

Pathways

Random

A
U

C
 v

al
ue

Figure 2  Cross-validation results. The AUC values obtained for all individual 
data sources are shown for disease prioritizations (black), pathway 
prioritizations (dark gray) and random prioritizations (light gray). The AUC 
values from the overall prioritization obtained after fusing all individual 
prioritizations are also shown.
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Data driven method
• Validation

- Leave-one out cross validation

- One gene is deleted from training genes (or 
known disease genes) as a test gene, and added 
to random test genes

- Compare rankings of the test genes and random 
test genes

S. Aerts et al., Gene prioritization through genomic data fusion , Nat biotechnology 2006
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Validation of Endeavour when accessing individual data sources
For each individual data source, we assessed whether our approach is 
capable of prioritizing genes known to be involved in specific diseases 
or receptor signaling pathways. To this end, we performed a large-scale 
leave-one-out cross-validation. In each validation run, one gene, termed 
the ‘defector’ gene, was deleted from a set of training genes and added 
to 99 randomly selected test genes. The software then determined the 
ranking of this defector gene for every data source separately. We used 
627 training genes, ordered in 29 training sets of particular diseases 

automatically selected from the Online Mendelian Inheritance In Man 
(OMIM) database (see Supplementary Notes online for selection pro-
cedure). For pathway genes, we compiled three sets of training genes 
involved in the WNT (43 genes), NOTCH (18 genes) and epidermal 
growth factor (15 genes) pathways. As a negative control for training 
genes, we assembled 10 sets of 20 randomly selected genes.

Thus, a total of 903 prioritizations (627 for the disease genes, 76 for 
the pathway genes and 200 for the random sets) were performed for 
each data source. From these, we calculated sensitivity and specificity 
values. Sensitivity refers to the frequency (% of all prioritizations) of 
defector genes that are ranked above a particular threshold position. 
Specificity refers to the percentage of genes ranked below this threshold. 
For instance, a sensitivity/specificity value of 70/90 would indicate that 
the correct disease gene was ranked among the best-scoring 10% of 
genes in 70% of the prioritizations. To allow comparison between data 
sources we plotted rank receiver operating characteristic (ROC) curves, 
from which sensitivity/specificity values can be easily deduced. The area 
under this curve (AUC) is a standard measure of the performance of 
this algorithm. For instance, an AUC-value of 100% indicates that every 
defector gene ranked first, whereas a value of 50% means that the defec-
tor genes ranked randomly.

For every single data source, Endeavour reached a higher AUC score 
for disease and pathway genes than for randomly selected genes, indi-
cating that it was sensitive and specific in ranking the defector gene, 
regardless of the type of data source consulted (Fig. 2). Not surprisingly, 
the data sources differed in their usefulness and suitability to rank genes 
(Supplementary Notes).

Overall prioritization by fusing multiple data sources
Although in most cases the defector gene ranked high in the prioritiza-
tion list, this was not always the case (Supplementary Fig. 1 online). 
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Figure 1  Concept of prioritization by Endeavour. Candidate test genes 
are ranked with Endeavour based on their similarity with a set of known 
training genes in a three-step analysis. In the first step (upper panel), 
information about a disease or pathway is gathered from a set of known 
training genes by consulting various data sources. Training genes can be 
loaded automatically (based on a Gene Ontology term, a KEGG pathway ID 
or an OMIM disease name) or manually. The latter allows the incorporation 
of expert knowledge. The following data sources are used: A, literature 
(abstracts in EntrezGene); B, functional annotation (Gene Ontology);
C, microarray expression (Atlas gene expression); D, EST expression
(EST data from Ensembl); E, protein domains (InterPro); F, protein-protein 
interactions (Biomolecular Interaction Network Database or BIND);
G, pathway membership (Kyoto Encyclopedia of Genes and Genomes or 
KEGG); H, cis-regulatory modules (TOUCAN); I, transcriptional motifs 
(TRANSFAC); J, sequence similarity (BLAST); K, additional data sources, 
which can be added (e.g., disease probabilities). In the second step (middle 
panel), a set of test genes is loaded (again, either manually or automatically 
by querying for a chromosomal region or for markers). These test genes are 
then ranked based on their similarity with the training properties obtained 
in the first step, which results in one prioritized list for each data source. 
Vector-based data are scored by the Pearson correlation between a test 
profile and the training average, whereas attribute-based data are scored 
by a Fisher’s omnibus analysis on statistically overrepresented training 
attributes. Finally, in the third step (lower panel), Endeavour fuses each 
of these rankings from the separate data sources into a single ranking and 
provides an overall prioritization for each test gene. As such, Endeavour 
prioritizes genes through genomic data fusion—a term, borrowed from 
engineering to reflect the merging of distinct heterogeneous data sources, 
even when they differ in their conceptual, contextual and typographical 
representations.
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Data driven method
• Validation

- Leave-one out cross validation

- One gene is deleted from training genes (or 
known disease genes) as a test gene, and added 
to random test genes

- Compare rankings of the test genes and random 
test genes

- Experimental validation

- A knockdown of YPEL1 results in changes in the 
pharyngeal arches

S. Aerts et al., Gene prioritization through genomic data fusion , Nat biotechnology 2006

A knockdown of YPEL1 results in 

changes in the pharyngeal arches



Data driven method
• Validation

- Leave-one out cross validation

- One gene is deleted from training genes (or 
known disease genes) as a test gene, and added 
to random test genes

- Compare rankings of the test genes and random 
test genes

- Experimental validation

- A knockdown of YPEL1 results in changes in the 
pharyngeal arches

S. Aerts et al., Gene prioritization through genomic data fusion , Nat biotechnology 2006

A knockdown of YPEL1 results in 

changes in the pharyngeal arches✓Advantage:  easy to perform analysis
✓Disadvantage: 

1) not easy to find good training genes, 
2) hard to interpret findings biologically



Endeavour website



Open Endeavour website

click



Open Endeavour website
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Useful resource

click

http://homes.esat.kuleuven.be/~bioiuser/gpp/index.php

http://homes.esat.kuleuven.be/~bioiuser/gpp/index.php
http://homes.esat.kuleuven.be/~bioiuser/gpp/index.php


Useful resource

click

Gene prioritization aims to identify the most promising 
genes (or proteins) among a larger pool of candidates 
through integrative computational analysis of public and 
private genomic data. Its goal is to maximize the yield 
and biological relevance of further downstream screens, 
validation experiments or functional studies by focusing 
on the most promising candidates. Bioinformatics tech-
niques for prioritization are useful at several stages of any 
gene-hunting process. These bioinformatics tools were 
initially developed to help to identify the disease-causing 
gene within a multigene locus that has been identified by a 
positional genetic study, as they allowed focusing the rese-
quencing of case and control samples on a few of the most 
likely candidate genes1–3. For instance, a linkage analysis 
on patients with anauxetic dysplasia identified a locus on 
9p13–p21 (REF. 4). Prioritization of the 77 genes from this 
locus using GeneSeeker5 pinpointed RNA component 
of mitochondrial RNA-processing endoribonuclease 
(RMRP) as a promising candidate, for which mutation 
in disease cases was then confirmed by sequencing4. 
Homozygosity mapping followed by mutation screening of 
the most promising candidates6–9 is another typical sce-
nario for gene prioritization. For instance, GeneDistiller10 
was used to prioritize 74 genes from a 2 Mb region on 
chromosome 17 that is associated with cardiac arryth-
mias, and a mutation in the top-ranking gene PTRF (also 
known as CAVIN) was found7. Similarly, Gentreprid11 
was used to prioritize the 200 genes from a 10 Mb locus 
on chromosome 17 that is associated with spondylocos-
tal dysostosis; a disease-specific variant within hairy and 
enhancer of split 7 (HES7) was then identified through 

sequencing6. Even in such simple scenarios, the task 
of identifying which genes from a given locus poten-
tially underlie a monogenic disease would be laborious 
without the automation provided by gene prioritization 
tools. Manually reviewing the literature and perusing 
public databases of functional annotation (such as Gene 
Ontology12 and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)13), sequence data (such as Ensembl14 
or the UCSC Genome Browser15) or expression data (such 
as ArrayExpress16 or Gene Expression Omnibus17) is a 
daunting task. Furthermore, prioritization methods have 
since proved to be applicable in many other situations, 
such as in more complex genetic studies of contiguous 
gene syndromes, genetic modifiers, acquired somatic 
mutations at multiple loci or genome-wide association 
studies (GWASs)18–21. For instance, using G2D22 identi-
fied 10 potential candidate genes for asthma, and a sub-
sequent association study of 91 SNPs in these genes found 
a variant in protein tyrosine phosphatase, receptor type E  
(PTPRE) that is associated with early-onset asthma23.

Beyond positional disease gene identification, gene 
prioritization can be used to identify promising candidates 
from many studies that generate gene lists, such as differ-
entially expressed genes from microarray or proteomics 
experiments or hits from RNAi screens or proteomics pull- 
down experiments. This broadening of applications 
is beginning to be reflected in the tools themselves: 
although the tools have a historical bias towards prior-
itization of human disease genes, methods are emerging 
that are tailored towards other applications, such as to  
select genes for a genetic screen in a model organism24.
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Homozygosity mapping
A form of recombination 
mapping that allows the 
localization of rare recessive 
traits by identifying unusually 
long stretches of homozygosity 
at consecutive markers.

Computational tools for prioritizing 
candidate genes: boosting disease 
gene discovery
Yves Moreau and Léon-Charles Tranchevent

Abstract | At different stages of any research project, molecular biologists need to choose 

— often somewhat arbitrarily, even after careful statistical data analysis — which genes or 

proteins to investigate further experimentally and which to leave out because of limited 

resources. Computational methods that integrate complex, heterogeneous data sets — 

such as expression data, sequence information, functional annotation and the biomedical 

literature — allow prioritizing genes for future study in a more informed way. Such 

methods can substantially increase the yield of downstream studies and are becoming 

invaluable to researchers.
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Network based method

• Background

- Genes/proteins interact with each other in the network 
tend to have similar biological processes and 
functions

- Identification of subnetworks containing a set of 
disease genes with novel candidate disease genes 
could help to improve the ability of disease gene 
discovery



Network based method
• Two approaches

- Molecular networks

- Integrated networks 

Wang et al., Network-based methods for human disease gene discovery, Briefings in Functional Genomics and Proteomics 2011

expression profiling experiments in addition to the
bias towards well-studied disease genes [23, 70].
High quality molecular networks are desired to in-
crease the prediction power and are realizable with
advances in high-throughput methods [26]. While
efforts have been made mostly on human molecular
networks, it is worth noticing that an increasing
number of protein interaction networks are under
construction for microbial pathogens [71–76].
Combining viral protein networks and human pro-
tein networks, so called ‘virhostome’, might unravel
key mechanisms of pathogen infection since virus–
host interactions are mostly physical interactions [11].

To conclude, the integration of steadily growing cel-
lular interactomes including PPI networks, regula-
tory networks, metabolic networks and virus–host
networks are crucial for understanding the mechan-
isms of human diseases and predicting novel candi-
date genes associated with diseases.

Key Points

! Humandiseases are the consequences of disruption inmolecular
networks.

! Genes associated with the same or similar diseases tend to
reside in the same neighborhood ofmolecular networks.

Figure 2: Prioritizing schemes for finding disease-associated genes. Candidate genes (within linkage intervals or
genome wide) and known disease genes are mapped to interactome networks. The distance between candidate
genes and known disease genes in interactome networks, functional networks or gene-phenotype networks
are measured using different methods to score and rank candidate genes.

Disease gene prediction page 11 of 14
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Network based method
• Network-based methods for the use of 

molecular interaction networks

- Input: known genes (training), a set of candidate loci, 
molecular network

- Output: a list of ranked candidate genes

Koller et al., Walking the interactome for prioritization of candidate disease genes, Am J Hum Genet. 2008 Apr;82(4):949-58. Epub 2008 Mar 27.
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Network based method

• Network-based methods for the use of 
integrated networks (e.g., disease phenotype 
similarity networks, disease-gene association 
networks, gene-gene interaction networks)

- Input:  a query disease phenotype

- Output: a list of ranked candidate genes



Motivation

• Modular view of disease and gene networks

- Phenotypically similar diseases are caused by functionally 
related genes 

disease genes, allowing their impact on pheno-
type to be measured more precisely.
The Orphanet database of rare human malfor-

mation disorders (55) already uses a systematic
means of classifying disease phenotypes includ-
ing trait lists annotated with frequency of
occurrence. This approach illustrates the direc-
tion that needs to be taken for phenotype
databases to be even more useful to automated
processing tools than they currently are. Con-
trolled vocabularies such as eVOC (56) or the
National Library of Medicine’s MeSH can be
used to standardize terms used in phenotype
description. For craniofacial malformation syn-
dromes, it remains difficult to find unequivocal
terms that capture the complete phenotypic
information. In this regard, a picture still tells
more than a thousand words. Quantitative
topological information acquired using comput-

erized analysis techniques such as the !dense
surface model’ (57–59) (Fig. 2) and Gabor
wavelet (60) technologies could potentially lead
to more rigorous phenotype comparisons than
text-based descriptions. A human phenome pro-
ject, as proposed by Freimer and Sabatti (61), is
clearly needed in some shape or form.

Future prospects

Given a more structured phenotype description
system, topological analyses of the human
phenome landscape can be conducted with more
precision. For instance, disease phenotypes could
be clustered to create a phenotypic similarity
network of inherited diseases, as already attempted
by us and also by Cantor and Lussier with
courser phenotype descriptions (22, 62). Such a
phenotype network would be valuable for
syndrome classification and could facilitate
research into the underlying genetics (6).
For instance, a similarity-based network of

syndrome phenotypes could be overlaid over a
functional-relatedness-based network of genes
such as that created by Franke et al. (50). The
hypothesis that similar phenotypes are caused by
functionally related disease genes could then be
tested on a genomic, and phenomic, scale.
Additionally, known causative genes from syn-
dromes that are phenotypically similar to a genet-
ically uncharacterized syndrome can be used to
query the gene network for functionally related
candidate genes (Fig. 3).
The modular nature of disease genes is rapidly

changing the way in which candidate genes are
mostly defined. Ultimately, one may expect that
this modular view of disease genes should be
especially helpful for the rapid identification of
additional disease genes for multifactorial diseases,
once the first few contributing genes (or environ-
mental factors) have been reliably identified.
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Fig. 3. Mapping phenotype networks to gene networks for
candidate disease gene prediction. In this hypothetical
example, diseases 1, 2 and 3 have known causative genes
(genes A, C and E, respectively), and are all phenotypically
related to disease 4, which lacks an identified causative gene.
If the known causative genes are functionally closely related,
as in this case, then candidate genes (genes B and D) can be
hypothesized for disease 4 due to their close functional
relationships to the known genes of the phenotypically
related diseases. This kind of analysis could potentially also
identify higher level links between functional genetic
modules and syndrome families. Green lines connect (green)
known disease genes with their (green) diseases, while red
lines indicate potential causative links between (red)
candidate genes and the (red) disease of unknown etiology.
Black lines of varying thickness indicate the degree of
phenotypic and functional similarity between diseases and
genes, respectively.

The modular nature of genetic diseases
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Public database
• Disease phenotype database

- Online Mendelian Inheritance in Man (OMIM)

• Disease-gene association database

- OMIM, dbSNP, GWAS, literature, and etc.

• Gene-gene interaction networks

- Protein-interaction, co-expression, and etc.,



Disease network
• Node: disease phenotype in OMIM
• Edge: phenotypical similarity calculated by text mining* with OMIM database (weights > 0.4)

*Marc Driel, et al. "A text-mining analysis of the human phenome", European Journal of Human Genetics 2006

Disease class annotation from Goh et. al, PNAS 2007



Challenge

Disease network

Breast cancer

Ovary cancer

Pancreatic cancer

Parkinson

Alzheimer

BRCA1

TP53

LEP

A2M

PSEN1

Gene interaction networkDisease-gene association network

.

.

.

text mining from OMIM
comordity from patients records

microarray gene expression

OMIM
dbGaP
GWAS

Protein interaction network
Co-expression 

Genetic interaction network

"One challenge computationally is integrating heterogeneous data sets to 
build a network model" - Ilya Shmulevich, Institute for System Biology, Nature 2010

.

.

.

.

.

.



Challenge

Disease network Gene interaction networkDisease-gene association network

text mining from OMIM
comordity from patients records

microarray gene expression

OMIM
dbGaP
GWAS

Protein interaction network
Co-expression 

Genetic interaction network

How to 
find missing associations 

between modules 
in networks  

?

• Generalizability and scalability 
- Efficient optimization 

• Provable theoretical guarantees 
- Consistency, convergence rate, etc

• Interpretability
- Biologically interpretable



Data integration

Human disease network Gene interaction networkDisease-gene association network

Disease-gene
bi-cluster

Gene
clusterDisease

cluster

: Disease phenotype : Gene:  Known disease-gene association

T. Hwang, and Rui Kuang, “A heterogeneous label propagation for disease gene discovery”. SDM 2010

?

• Different network data could be combined as an integrated 
heterogeneous network

• Exploring cluster structures in each network independently



Problem formulation

T. Hwang, and Rui Kuang, “A heterogeneous label propagation for disease gene discovery”. SDM 2010

• Given: an integrated heterogeneous network and a query disease 
phenotype

• Task: predict candidate disease causative genes of the query disease 
phenotype

• Input: initial activation values on the query node

• Output: a ranked gene list based on final activation values
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Query disease 
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disease network gene networkdisease-gene association network

Q: Find candidate disease genes associated with a query disease phenotype



• Q: Find candidate disease genes associated with a query disease 
phenotype

1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)
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Query disease 
phenotype

disease network gene network

Working example (1/5)



• Q: Find candidate disease genes associated with a query disease 
phenotype

1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)

2. Run label propagation on each network interactively

• Run label propagation on disease network with initialization from gene 
network 
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• Q: Find candidate disease genes associated with a query disease 
phenotype

1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)

2. Run label propagation on each network interactively

• Run label propagation on gene network with initialization from disease 
network 
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• Q: Find candidate disease genes associated with a query disease 
phenotype

1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)

2. Run label propagation on each network interactively

• Repeat until activation values on all nodes converge
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• Q: Find candidate disease genes associated with a query disease 
phenotype

1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)

2. Run label propagation on each network interactively

3. Analysis: Rank genes based on their final activation values

✓ Highly ranked genes can be candidate disease genes of query 
disease  
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1. Disease phenotype 
similarity network

• 5080 disease phenotypes

• Edges are weighted by pairwise 
disease similarities among 5080 
disease phenotypes calculated by 
text mining techniques [Marc Driel, et 
al., European Journal of Human Genetics 
2006]

2. Disease-gene association 
network [OMIM database., May 2007]

• an undirected bi-partite graph with 
disease and gene vertices

• 1126 disease-gene associations

3. Protein interaction 
networks [HPRD database., May 2007]

• 8919 proteins are mapped to 
human genes

• 34364 binary-valued undirected 
interactions between 8919 proteins

• Self-interactions are removed

Data preparation



Case study (1/2)

3.3. Case Study: Discovering New OMIM Associations Added af-
ter May 2007

Table 3: Disease gene prioritization performance in the case study. This table
reports the average AUC scores and the pairwise win/draw/loss comparisons between
MINProp and the baselines, PRINCE, Random Walk (RW), and CIPHER SP, across the
query phenotypes in the two settings.

Methods
Known disease genes New disease genes

Avg. AUC (win/draw/loss) Avg. AUC (win/draw/loss)
MINProp vs. PRINCE 0.984 vs. 0.933 (79/30/25) 0.698 vs. 0.677 (192/103/109)

MINProp vs. Random Walk 0.984 vs. 0.926 (71/11/19) 0.698 vs. 0.696 (198/3/92)
MINProp vs. CIPHER SP 0.986 vs. 0.719 (134/0/0) 0.698 vs. 0.650 (284/0/120)

To test the real performance of discovering new disease phenotype-gene
associations, a case study was also conducted to predict the associations
added into OMIM between May, 2007 and July, 2009. The recent disease
phenotype-gene associations from OMIM in July, 2009 were downloaded and
compared to the associations in the May-2007 version. There are 462 new
associations involving 374 new phenotypes in the July-2009 version. Out
of the 462 new associations, 95 associations are between the known disease
genes and the phenotypes, and the other 367 are between the phenotypes
and newly discovered disease genes, which were among the non-disease genes
in the May-2007 version. We performed experiments in the two settings with
di�erent sets of control genes: non-disease genes or all genes including the
other disease genes in the May-2007 version, and measured AUC scores based
on the ranking of the true disease genes among the control genes. Note that
we only compared the performance of MINProp with PRINCE and CIPHER-
SP because CIPHER DN is not capable of ranking the genes at genome-wide
scale experiments as discussed in the previous section. Twenty phenotypes
are associated with new disease genes in both settings (among either pre-
viously known disease genes or non-disease genes). Thus, experiments were
performed in both settings for the 20 phenotypes. The average AUCs of gene
ranking across all queries by MINProp, Random Walk and CIPHER are re-
ported in Table 3. In the first setting, MINProp outperformed CIPHER SP
by 28.2% and Random Walk by 5.7%. In the second setting, MINProp out-
performed CIPHER SP by 4.9% and Random Walk by 2.0%. The querywise
comparisons of the AUC scores in Table 3 suggest that MINProp improved
the ranking of more query cases than the other methods in both experiments.

18

• Experimental setup
✓ Use old-version of disease-gene associations (before May 2007) to predict 

new disease genes for disease phenotype

✓ Compare prediction results with recent association data (April 2010)

-  538 new associations

- 404 associations between newly discovered disease genes and 
disease phenotypes

- 134 associations between known disease genes and disease 
phenotypes



Case study (2/2)
• Our approach is capable to identify true disease 

causative genes of disease phenotypes
MIM# Phenotype Name

HGNC 
symbol

Ranking 
MINProp

Ranking 
CIPHER SP

Ranking
PRINCE

Status

601626 LEUKEMIA, ACUTE MYELOID

MLF1 3 4323 4323 new

601626 LEUKEMIA, ACUTE MYELOID
JAK2 15 354 280 new

601626 LEUKEMIA, ACUTE MYELOID
ETV6 23 769 769 new

601626 LEUKEMIA, ACUTE MYELOID

GMPS 245 4512 4512 new

300299 NEUTROPENIA WAS 1 1656 30 known

171300 PHEOCHROMOCYTOMA
VHL 1 1105 1105 new

171300 PHEOCHROMOCYTOMA GDNF 16 1400 1400 known171300 PHEOCHROMOCYTOMA
KIF1B 228 512 512 new

607174 MENINGIOMA, FAMILIAL
NF2 1 1279 1279 known

607174 MENINGIOMA, FAMILIAL
PTEN 5 1307 1307 known

166710 OSTEOPOROSIS

LRP5 2 1541 1541 known

166710 OSTEOPOROSIS
CALCR 4 7661 7661 new

166710 OSTEOPOROSIS
COL1A1 5 8086 8086 known

166710 OSTEOPOROSIS

VDR 42 1402 1402 known

202300 ADRENOCORTICAL CARCINOMA TP53 1 1249 430 known

601367 STROKE, ISCHEMIC
PRKCH 14 448 448 new

601367 STROKE, ISCHEMIC
ALOX5AP 154 7892 7892 known



disease network gene networkdisease-gene association network

Query disease 
phenotype breast cancer

ovarian cancer
lung cancer

stomach cancer

ESR1
Target disease gene

* ESR1 is a known causative gene for breast and ovarian cancer

1. Uncovering associations with known disease genes 

Ex) Remove the direct association btw ESR1 and breast cancer (keep the 
association btw ESR1 and ovarian cancer)

2. Discovering associations with unknown disease genes

Ex) Remove all association btw ESR1 and other disease

Leave-one out cross validation



• Overall, MINProp achieved best performances in leave one 
out cross validation for two experiments set-up

Ranking diseaes genes

two di�erent settings is to give a comprehensive evaluation of the methods
in scenarios with di�erent network connectivities on the target genes.

3.2.5. Performance of Ranking Disease Genes in Leave-one-out
Cross-validation

Table 1: Disease gene prioritization performance in leave-one-out cross-
validation. This table reports the average AUC scores and the pairwise win/draw/loss
comparisons between MINProp and the baselines, PRINCE, Random Walk (RW), and
CIPHER DN or SP, across the query phenotypes in the two settings.

Methods
Known disease genes New disease genes

Avg. AUC (win/draw/loss) Avg. AUC (win/draw/loss)
MINProp vs. PRINCE 0.805 vs. 0.785 (796/24/306) 0.728 vs. 0.703 (642/8/476)

MINProp vs. Random Walk 0.805 vs. 0.797 (738/75/313) 0.728 vs. 0.648 (1045/2/79)
MINProp vs. CIPHER-DN 0.863 vs. 0.738 (565/5/288) 0.821 vs. 0.738 (515/11/332)
MINProp vs. CIPHER-SP 0.805 vs. 0.734 (678/8/440) 0.728 vs. 0.729 (538/54/534)

The 5080 disease phenotypes and the 1126 phenotype-gene associations
extracted from OMIM version May-2007 were tested in leave-one-out cross-
validation under the two settings. We performed leave-one-out cross valida-
tion by holding-out one query phenotype for testing at a time. The ranking
performances of all the methods in the two settings are measured by AUC
scores calculated based on the ranking of the true disease genes among the
control genes determined by each method. One limitation of CIPHER DN
is that only genes with at least one disease gene in its direct neighbors can
be ranked with the other genes. Thus, for some of the query phenotypes,
its disease genes cannot be ranked by CIPHER DN in leave-one-out cross-
validation. After filtering of the query phenotypes with causative disease
genes that have no direct neighbor to the other disease genes, 858 disease
phenotypes were left for evaluation in the comparison with CIPHER DN.

The average AUCs of gene ranking across all the queries by MINProp,
PRINCE and CIPHER are reported in Table 1. In the first setting, MINProp
outperformed CIPHER DN by 12.5%, CIPHER SP by 7.1% and Random
Walk by only 0.8%. In the second setting, MINProp outperformed Random
Walk by 8% and CIPHER DN by 7.3%, and achieved a tie with CIPHER SP.
The pairwise comparisons of the AUC scores in Table 1 suggest that MINProp
improved the ranking of more query cases compared with the other methods,
except the comparison with CIPHER SP in the first setting. A more detailed
examination of the individual query cases is given in Fig 5. Interestingly,
MINProp can win over Random Walk in about 66% and 93% queries in the
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Exploring modularity of genes

3.3. Case Study: Discovering New OMIM Associations Added af-
ter May 2007

Table 3: Disease gene prioritization performance in the case study. This table
reports the average AUC scores and the pairwise win/draw/loss comparisons between
MINProp and the baselines, PRINCE, Random Walk (RW), and CIPHER SP, across the
query phenotypes in the two settings.

Methods
Known disease genes New disease genes

Avg. AUC (win/draw/loss) Avg. AUC (win/draw/loss)
MINProp vs. PRINCE 0.984 vs. 0.933 (79/30/25) 0.698 vs. 0.677 (192/103/109)

MINProp vs. Random Walk 0.984 vs. 0.926 (71/11/19) 0.698 vs. 0.696 (198/3/92)
MINProp vs. CIPHER SP 0.986 vs. 0.719 (134/0/0) 0.698 vs. 0.650 (284/0/120)

To test the real performance of discovering new disease phenotype-gene
associations, a case study was also conducted to predict the associations
added into OMIM between May, 2007 and July, 2009. The recent disease
phenotype-gene associations from OMIM in July, 2009 were downloaded and
compared to the associations in the May-2007 version. There are 462 new
associations involving 374 new phenotypes in the July-2009 version. Out
of the 462 new associations, 95 associations are between the known disease
genes and the phenotypes, and the other 367 are between the phenotypes
and newly discovered disease genes, which were among the non-disease genes
in the May-2007 version. We performed experiments in the two settings with
di�erent sets of control genes: non-disease genes or all genes including the
other disease genes in the May-2007 version, and measured AUC scores based
on the ranking of the true disease genes among the control genes. Note that
we only compared the performance of MINProp with PRINCE and CIPHER-
SP because CIPHER DN is not capable of ranking the genes at genome-wide
scale experiments as discussed in the previous section. Twenty phenotypes
are associated with new disease genes in both settings (among either pre-
viously known disease genes or non-disease genes). Thus, experiments were
performed in both settings for the 20 phenotypes. The average AUCs of gene
ranking across all queries by MINProp, Random Walk and CIPHER are re-
ported in Table 3. In the first setting, MINProp outperformed CIPHER SP
by 28.2% and Random Walk by 5.7%. In the second setting, MINProp out-
performed CIPHER SP by 4.9% and Random Walk by 2.0%. The querywise
comparisons of the AUC scores in Table 3 suggest that MINProp improved
the ranking of more query cases than the other methods in both experiments.
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• How well the method could explore modular 
structures (i.e., cluster or subnetwork) of genes?

✓ In most of most cases that disease genes of query 
phenotypes have higher clustering coefficients, 
MINProp performs better that that of baselines

✓ Hybrid case shows better performances against 
MINProp

two experiments but only by a relative small margin — most of the dots
in the scatter plot in Fig 5A and Fig 5D are just below the diagonal line.
Since both methods are exploring the global structures in the network, it is
not supervising that the results are strongly correlated. However clearly, by
exploring the independent structures in the subnetworks, MINProp is able
to improve most of the predictions. In the comparison with CIPHER DN
in Fig 5B and Fig 5E, MINProp and CIPHER DN produce quite di�erent
results in most of the queries. MINProp improved on many hard cases, on
which CIPHER DN and SP performed poorly. This suggests that for many
cases, it is not enough to just check the second-order neighbors of the genes,
and it is important to explore the global structures.

MINProp achieved the best overall performance in the experiments. The
explanation of the tie between MINProp and CIPHER SP in the second set-
ting needs more analysis. CIPHER SP also explores the global structure in
the gene-gene interaction network since the gene-gene connection was evalu-
ated by shortest paths, which measure remote interaction between the genes
in the network. In the second setting, because no target genes are linked
with the phenotypes, the cluster structures in the phenotype similarity net-
work only have small influence. Thus, the ranking of the disease genes relies
more on the bi-clusters between the genes and the phenotypes. In this case,
CIPHER SP can possibly perform better on the disease genes that are di-
rectly connected to other disease genes, while MINProp might dilute this
direct information with neighborhood averaging. To show that MINProp
and CIPHER SP can be complementary to each other, we further combined
the gene ranking produced with MINProp and CIPHER SP by averaging the
ranks of each gene in the two lists. A 3% improvement is observed in the
hybrid case (last column in Table 2).

Table 2: Ranking performance on phenotypes with di�erent gene clustering
coe⇥cients. The table reports relative performance of the MINProp with PRINCE ,
CIPHER DN (C-DN) & SP (C-SP) and Hybrid (Combined ranking of MINProp and
CIPHER SP).

CC
MINProp vs. PRINCE MINProp vs. C-DN MINProp vs. C-SP Hybrid vs. MINProp

Avg. AUC Avg. AUC Avg. AUC Avg. AUC
[0.1, 1] 0.875 vs. 0.854 0.889 vs. 0.855 0.875 vs. 0.813 0.886 vs. 0.875

[0.01, 0.1) 0.902 vs. 0.886 0.906 vs. 0.799 0.902 vs. 0.801 0.911 vs. 0.902
[0, 0.1) 0.653 vs. 0.626 0.770 vs. 0.688 0.654 vs. 0.693 0.692 vs. 0.654
Total 0.728 vs. 0.703 0.821 vs. 0.738 0.728 vs. 0.729 0.756 vs. 0.727
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* Higher average clustering coefficients of disease genes indicate strong modularity of genes in the 
protein interaction network



Today’s topic

• Disease phenotype-gene association study

- Identify genetic variations affecting the phenotypic changes 
on a genome-scale

• Applications

1. Disease gene prediction

- Predict candidate disease genes associated with a query 
disease phenotype

2. Predicting phenotypic/functional impact of candidate 
disease genes

- Give a gene (or a set of genes), predict its target disease 
phenotypes/functions



Inferring disease and gene set association

• Background

- Numerous genome-scale disease studies are 
conducted to discover candidate disease causing 
genes

- Overrepresentation based gene set enrichment 
analysis widely used for validation for their findings

✓ GSEA (Broad), DAVID (NIH), and etc.

T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011



Challenge

• Current knowledge for gene function, pathway, and 
disease genes are still incomplete

• Novel disease susceptibility genes are often not well 
characterized and studied (e.g. unknown for their 
functions, pathways and associations with disease)

- Ex) Only less than one-quarter of significantly altered copy number 
regions contain previously validated cancer-causing genes. [Beroukhim 
et al., Nature 2010]

T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011

Novel candidate disease genes Reference gene set 
(e.g. pathway, GO function, disease genes)

\ ;=
No overlapping genes between candidate disease gene set and reference gene set

No overlapping = No association ?
T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011
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• Current knowledge for gene function, pathway, and 
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• Novel disease susceptibility genes are often not well 
characterized and studied (e.g. unknown for their 
functions, pathways and associations with disease)
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Novel candidate disease genes Reference gene set 
(e.g. pathway, GO function, disease genes)

\ ;=
No overlapping genes between candidate disease gene set and reference gene set

No overlapping = No association ?
T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011

What if candidate disease genes interact with 
genes in the reference gene set?

gene interaction

No!



Network based method

• By querying the networks with a given gene set, we want 
to retrieve a list of disease phenotypes with the highest 
predicted association with the gene set.

T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011

Two rankings between disease gene and its target disease are coherent!
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Network based method
• Objective: Given a query gene set, find a disease phenotype maximizing 

coherence between rankings of disease gene, and its target disease

T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011
Two rankings between disease gene and its target disease are coherent!
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Network based method
• Objective: Given a query gene set, find a disease phenotype maximizing 

coherence between rankings of disease gene, and its target disease

T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011
Two rankings between disease gene and its target disease are coherent!
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Network based method
• Objective: Given a query gene set, find a disease phenotype maximizing 

coherence between rankings of disease gene, and its target disease

T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011
Two rankings between disease gene and its target disease are coherent!

1

0

0

00

1

0

1

1

0

0 0

0.9

0.9

0.7

0.50.5

0.9

0.8

0.9

0.9

0.6

0.4 0.4

Map query 
genes in the
gene network

Calculate graph 
Laplacian scores

(B) Gene network (D) Disease phenotype 
network(C) Rank Coherence in Networks

(A) Query gene set

1

2

3

4

5

Known disease-gene 
association

0

00

0

0

0

0.6

0.80.8

0.5

0.4

0.7

0.4

1

0

Unrelated 
disease 

phenotype
0.9

Calculate graph
Laplacian scores

1

2

3

4

Disease
ranking

0.4

0.3
0.2
0.1

0.3

0.3

Gene
ranking

1. A ridge regression model 2. Enumeration methods
� = ||Ap̃� g̃||2 + ||p||2 (1)

rcNet

corr

(g̃, p̃,A) = corr(Ap̃, g̃) (1)

rcNetlap(g̃, p̃,A) = �
X

i,j

Ai,j(p̃i � g̃j)
2 (1)

g̃ p̃
pg AG

P

: Initial gene score vector
: Final gene score vector

: Initial disease score vector
: Final disease score vector

: Gene network
: Disease network

: Disease-gene 
association networkg̃

p

2. Enumeration methods
rcNet

corr

(g̃, p̃,A) = corr(Ap̃, g̃) (1)

rcNetlap(g̃, p̃,A) = �
X

i,j

Ai,j(p̃i � g̃j)
2 (1)

2. Enumeration methods
rcNet

corr

(g̃, p̃,A) = corr(Ap̃, g̃) (1)

rcNetlap(g̃, p̃,A) = �
X

i,j

Ai,j(p̃i � g̃j)
2 (1)Given gene and diseae score    ,

find diseae score “  “  that maximize 
scores

p



Real example
• Query novel breast cancer susceptibility genes from 

recent GWAS to predict target disease phenotype 
(breast cancer)

- Genes in the query gene set are not known for any associations with any disease 
phenotypes

T. Hwang et. al., “Inferring disease and gene set association using rank coherent”. Bioinformatics 2011

Query gene

Disease gene

Disease phenotype

Disease-gene association
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LFS1

155600: MELANOMA,  CUTANEOUS 
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1. Disease phenotype 
similarity network

• 5080 disease phenotypes

• Edges are weighted by pairwise 
disease similarities among 5080 
disease phenotypes calculated by 
text mining techniques [Marc Driel, et 
al., European Journal of Human Genetics 
2006]

2. Disease-gene association 
network [OMIM database., May 2007]

• an undirected bi-partite graph with 
disease and gene vertices

• 1126 disease-gene associations

3. Protein interaction 
networks [HPRD database., May 2007]

• 8919 proteins are mapped to 
human genes

• 34364 binary-valued undirected 
interactions between 8919 proteins

• Self-interactions are removed

4. Functional linkage 
networks [Huttenhower et al., 2009]

• 24,433 genes in the network

• 60 million weighted (undirected) 
interactions between 24,433 genes

• Self-interactions are removed

Data preparation



• Baselines
• Cipher [Wu et al, Molecular System 

Biology 2009] 

• Random walk restart [Y Li, 
Bioinformatics 2010]

• Task
• Given a query disease gene set, 

find target disease phenotype

- rank candidate target diseases of the 
query gene set

*The classification performance of all methods are evaluated using area under the receiver operating 
characteristics (ROC) score.

•  Validations
• Leave-one-out cross-validations

• Case study 

• recent OMIM

• GWAS

• Copy number data

• Gene expression data

T. Hwang et. al., “Inferring diseae and gene set association using rank coherent”. Bioinformatics 2012

Experiments



T. Hwang et. al., “Inferring diseae and gene set association using rank coherent”. Bioinformatics 2012

Leave one out cross validation
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• Query novel disease susceptibility genes from recent GWAS 
to predict the disease phenotype

- Q) How a set of novel candidate disease genes from GWAS affects to 
disease phenotypes?

T. Hwang et. al.,, “Inferring diseae and gene set association using rank coherent”. Bioinformatics 2012

GWAS experiments

DGSA Analysis with rcNet

Table 2. Ranking the target disease phenotype of the disease susceptibility genes identified from GWAS. The disease categories in the first column
are based on the definition in Goh et al. (2007). In the third column, the PubMed IDs marked with ‘*’ denote multiple GWASs for a disease/trait. Refer to
supplementary Table for the results of the full list of the GWAS cases.

Category Disease/Trait PubMed Index OMIM Index Gene Set Rank by Rank by Rank by
Size rcNet rcNetcorr rcNetlap

Cancer

Prostate cancer 20676098* 176807 15 2 (0.03%) 2 (0.03%) 2 (0.03%)
Breast cancer 20872241* 113705 26 7 (0.1%) 51 (1%) 43 (0.8%)

Basal cell carcinoma (cutaneous) 18849993 605462 5 7 (0.1%) 189 (3.7%) 228 (4.5%)
Basal cell carcinoma (cutaneous) 18849993 604451 5 90 (2%) 202 (4%) 256 (5%)

Urinary bladder cancer 18794855 109800 1 14 (0.2%) 48 (0.9%) 60 (1.1%)
Acute lymphoblastic leukemia (childhood) 20670164* 159555 3 19 (0.04%) 51 (1.0%) 45 (0.8%)

Lung cancer 20304703* 211980 12 22 (0.4%) 587 (12%) 1610 (32%)
Lung adenocarcinoma 20871597* 211980 6 52 (1%) 838 (16%) 1815 (36%)

Chronic lymphocytic leukemia 20062064* 151430 14 57 (1%) 318 (6.3%) 306 (6%)
Neuroblastoma (high-risk) 19412175 600613 1 143 (3%) 110 (2%) 138 (3%)

Immunological
Systemic lupus erythematosus 20169177* 152700 10 46 (0.9%) 178 (4%) 161 (3%)

Leprosy 20018961 246300 4 78 (1.5%) 62 (1.2%) 64 (1.3%)
Leprosy 20018961 607572 4 272 (5%) 54 (1%) 55 (1%)

Endocrine
Type 2 diabetes 20862305* 125853 9 97 (2%) 718 (14%) 1912 (38%)
Type 1 diabetes 19966805* 222100 26 331 (7%) 690 (13%) 191 (3.8%)

Gastrointestinal Crohns disease 17684544 266600 2 60 (1.2%) 1396 (27%) 3012 (59%)
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Fig. 6. Querying with breast cancer susceptibility genes from GWAS by rcNet. This example shows how rcNet algorithm predicted the target disease
phenotypes of breast cancer susceptibility genes from GWAS. By querying with the 26 novel breast cancer susceptibility genes from GWAS, rcNet ranked the
20 disease genes in the gene subnetwork at the top. The gene subnetwork also includes 14 out the 26 query genes, which are connected with the top-20 genes.
Similarly, the top 20 disease phenotypes ranked by OMIM113705 breast cancer disease phenotype are included in the disease subnetwork. In this example,
5 of the 20 top-ranked disease genes are connected to 7 of the top-20 disease phenotypes given by 7 OMIM disease-gene associations, compared with the
expected 0.87 association between 34 random genes and 20 random phenotypes.

the target disease within top 100. (Beroukhim et al., 2010) stated
that more than three-quarters of the statistically significantly altered
copy number regions contain potential cancer causing genes that are
not previously validated targets of somatic copy number alternations
in human cancer. This suggests that enrichment analysis of the genes
will not reveal any disease-association, but the rcNet algorithms
found many associations with the network information.

3.7 Predicting Disease Phenotypes of Differentially
Expressed Genes

It is frequently observed that many disease susceptibility genes
are not differently expressed in microarray gene expression
experiments. In this experiment, we applied the rcNet algorithms to
predict the target disease of differentially expressed genes in gene
expression profiles. We collected 13 human cancer microarray gene
expression dataset from GEO. The gene expression profiles were
obtained on the Affymetrix HG-U133A array, and normalized by

Table 3. Ranking the target disease phenotypes of the candidate disease
genes with copy number changes. This experiment includes 13 human
cancer copy number studies from (Beroukhim et al., 2010).

Disease/Trait Rank by Rank by Rank by
rcNet rcNetcorr rcNetlap

Neuroblastoma 5 13 126
Colorectal cancer 14 20 613

Renal cancer 22 14 33
Non small cell lung cancer 34 48 558

Breast cancer 68 136 521
Medulloblastoma 77 826 2007
Prostate cancer 129 127 2447
Ovarian cancer 322 73 1108

Small cell lung cancer 759 53 909
Mesothelioma 959 21 54

Gastrointestinal stromal tumor 1169 787 1679
Hepatocellular carcinoma 4241 952 1295

Glioma 4705 787 951
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Table 2. Ranking the target disease phenotype of the disease susceptibility genes identified from GWAS. The disease categories in the first column
are based on the definition in Goh et al. (2007). In the third column, the PubMed IDs marked with ‘*’ denote multiple GWASs for a disease/trait. Refer to
supplementary Table for the results of the full list of the GWAS cases.
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Lung adenocarcinoma 20871597* 211980 6 52 (1%) 838 (16%) 1815 (36%)
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Immunological
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Endocrine
Type 2 diabetes 20862305* 125853 9 97 (2%) 718 (14%) 1912 (38%)
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Fig. 6. Querying with breast cancer susceptibility genes from GWAS by rcNet. This example shows how rcNet algorithm predicted the target disease
phenotypes of breast cancer susceptibility genes from GWAS. By querying with the 26 novel breast cancer susceptibility genes from GWAS, rcNet ranked the
20 disease genes in the gene subnetwork at the top. The gene subnetwork also includes 14 out the 26 query genes, which are connected with the top-20 genes.
Similarly, the top 20 disease phenotypes ranked by OMIM113705 breast cancer disease phenotype are included in the disease subnetwork. In this example,
5 of the 20 top-ranked disease genes are connected to 7 of the top-20 disease phenotypes given by 7 OMIM disease-gene associations, compared with the
expected 0.87 association between 34 random genes and 20 random phenotypes.

the target disease within top 100. (Beroukhim et al., 2010) stated
that more than three-quarters of the statistically significantly altered
copy number regions contain potential cancer causing genes that are
not previously validated targets of somatic copy number alternations
in human cancer. This suggests that enrichment analysis of the genes
will not reveal any disease-association, but the rcNet algorithms
found many associations with the network information.

3.7 Predicting Disease Phenotypes of Differentially
Expressed Genes

It is frequently observed that many disease susceptibility genes
are not differently expressed in microarray gene expression
experiments. In this experiment, we applied the rcNet algorithms to
predict the target disease of differentially expressed genes in gene
expression profiles. We collected 13 human cancer microarray gene
expression dataset from GEO. The gene expression profiles were
obtained on the Affymetrix HG-U133A array, and normalized by

Table 3. Ranking the target disease phenotypes of the candidate disease
genes with copy number changes. This experiment includes 13 human
cancer copy number studies from (Beroukhim et al., 2010).

Disease/Trait Rank by Rank by Rank by
rcNet rcNetcorr rcNetlap

Neuroblastoma 5 13 126
Colorectal cancer 14 20 613

Renal cancer 22 14 33
Non small cell lung cancer 34 48 558

Breast cancer 68 136 521
Medulloblastoma 77 826 2007
Prostate cancer 129 127 2447
Ovarian cancer 322 73 1108

Small cell lung cancer 759 53 909
Mesothelioma 959 21 54

Gastrointestinal stromal tumor 1169 787 1679
Hepatocellular carcinoma 4241 952 1295

Glioma 4705 787 951
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RMA (Irizarry et al., 2003). Standard t-test was used to identify
differentially expressed genes. The differentially expressed genes
were used to query for their target diseases. To quantify how reliable
a differential expression is, the query gene nodes were initialized
by the absolute values of the t-statistics for label propagation.
Table 4 reports the results of predicting the target diseases of
the differentially expressed genes. Out of the 13 cases, the rcNet
algorithms could rank 7 within top 5%, and 12 within top 10%.
Although the result is only moderately encouraging, it validates
the hypothesis that the neighboring information of the differentially
expressed genes provides clue of association with the target disease
phenotype.

Table 4. Ranking the target disease of differentially expressed genes.
The first column represents the target disease of a microarray gene
expression study, and the second column gives the GEO number of the
dataset.

Disease/Trait GEO Rank by Rank by Rank by
Num. rcNet rcNetcorr rcNetlap

AML GSE9476 576 316 359

Breast cancer

GSE7390 14 49 51
GSE2034 40 130 146
GSE6532 129 151 182
GSE1456 138 102 109
GSE3494 161 709 1313

Gastric cancer GSE13911 248 298 362

Lung cancer
GSE10072 206 755 2219

E-MEXP-231 318 608 1115
GSE7670 379 1330 4002

Ovarian cancer GSE6008 414 1494 2283

Prostate cancer
E-MEXP-1327 271 1446 2057

GSE8218 900 1214 2498

4 RCNET WEBTOOL
The rcNet algorithms were implemented and deployed as a
general webtool for disease-gene set association analysis at http:
//compbio.cs.umn.edu/dgsa_rcNet. Providing a list of
query genes, a user can retrieve the OMIM disease phenotypes
ranked by their degree of association with the gene set. In Fig. 7,
we show an example of querying rcNet WebTool with the disease
gene set of prostate cancer from GWAS. In the implementation, the
Laplacian scores are precomputed to improve efficiency. Currently,
it takes the server less than 5 seconds to response to a gene set query.

5 DISCUSSIONS
Analysis of the gene sets from genome-wide high-throughput
screening is a continuing challenge in many disease studies. When
the gene set is poorly annotated, enrichment analysis will fail
to detect any associations with disease phenotypes, or when the
gene set contains genes in a broad range of functional categories,
enrichment analysis provides unreliable statistical significance.
Statistics from OMIM (Jan 2011) show that 3745 of the 6675
disease phenotypes are still unknown for their molecular basis.
Thus, enrichment analysis will fail to find any associations between
the 3745 disease phenotypes and any query gene set. For example,
in the experiments with the GWAS gene sets, rcNets algorithms
ranked leprosy (OMIM:246300 and OMIM:607572) among the top

Fig. 7. rcNet WebTool Demo. In this example, a gene set with a list of 15
genes identified as prostate cancer susceptibility genes in GWAS was used to
query rcNet WebTool. The left panel shows the settings used for query and
the right panel displays the query result.

2% phenotypes, while enrichment analysis reported no association
for the four disease susceptibility genes of leprosy. rcNet focuses on
improving detection of disease phenotype-gene set associations by
integrating gene network and disease network to better summarize
sparse associations for a global comparison of all possible disease
and gene set associations. The rcNet algorithms effectively utilizes
hidden information in the gene network and the disease network
with the machine learning models. First, the label propagation
steps on both the gene network and the disease network fully
explore the neighborhood information of the query genes and a
disease phenotype. The relevance information is propagated from
the seed nodes to their neighbors to provide a global quantification
of relevance, and the relevance scores are then utilized with all
the known associations for evaluating the association between the
gene set and the disease phenotype. Thus, analysis with rcNet
is not biased by poor known annotation or the size of the query
gene set. Second, compared with the other methods that also
utilizing the gene network and the disease network, rcNet is more
flexible in handling the network data because rcNet is capable of
handling weighted associations and weighted edges in the gene
network and the disease network. rcNet does not rely on deciding
direct neighbors or shortest path as CIHPER or PRINCE (Vanunu
et al., 2010). Finally, the ridge regression model coupled with
label propagation provides an approximation of finding association
between a gene set and multiple disease phenotypes, which is
difficult to achieve with enumeration-based strategies.

Despite the encouraging results of rcNet, there are also
limitations. First, rcNet relies heavily on the networks. For the
cases where the gene set already has known associations with the
target disease phenotype, the network information might introduce
noise to dilute the strong signal as showed in Fig. 5. Thus,
rcNet is more useful for studying new diseases that have not been
genetically characterized rather than confirming well-understood
diseases. Second, it is also difficult to distinguish the closely
related phenotypes from false positives, because it is possible that
some of the top-ranked phenotypes is not similar to or share any
common disease genes with the target disease phenotype in the
disease network. Interpretation of these phenotypes will not be
straightforward. A possible solution is to identify subnetworks as
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rcNet algorithm DGSA Analysis with rcNet

dgsa rcNet(g, Ḡ, P̄,A, �, ⇥)

1 p = 0

2 g̃ = (1� �)(I� �Ḡ)�1g (equation (3)).
3 Ā = (1� ⇥)A(I� ⇥P̄)�1

4 p⇤ = (ĀTĀ + ⇤I)�1ĀTg̃

5 p(p⇤ > a) = 1 (target selection with threshold a)
6 return (p)

Fig. 2. rcNet Algorithm - Rank Coherence in Networks.

from the disease phenotype. One limitation is that the phenotype
network and the sparse known associations are not fully utilized
in the global analysis. The label propagation algorithms proposed
by Hwang and Kuang (2010) and Li and Patra (2010) explore a
heterogeneous network combining the gene network, the phenotype
network and the associations to explore gene modules, phenotype
modules and the phenotype-gene association biclusters. Since the
two methods make full use of the information in the networks, it is
difficult to interpret the results and to tune the best parameters for
combining the information.

2 METHODS
2.1 Problem Definition
We formulate a graph query problem for disease phenotype and gene set
association discovery: given a heterogenous network consisting of the gene
network, the phenotype network and the association network, we query the
network with a gene set to retrieve a phenotype (or several) predicted to have
association with the query gene set. We define G(n⇥n), P(m⇥m), and
A(n⇥m) as the adjacency matrix of the gene network, the disease network,
and the disease-gene association network, respectively, where n is the
number of genes and m is the number of disease phenotypes in the networks.
The query gene set is represented by a binary vector g = [g1,g2, ...,gn]T

denoting the gene membership against the gene set, i.e. each gi = 1 if gene i
is in the query gene set, otherwise 0. Similarly, the list of target phenotype(s)
is given by another binary vector p = [p1,p2, ...,pm]T and phenotype j
is a target phenotype if pj = 1. Our objective is to find the p that gives the
best rank coherence with the query gene set g.

2.2 Computing Graph Laplacian Scores
To fully utilize network topological information, we compute the global
relevance score between the query gene set g and all the genes based on
the graph Laplacian of the gene network G(n⇥n). We first normalize G as

Ḡ = D
1
2
GGD

1
2
G, where DG is a diagonal matrix with diagonal elements

DGi,i =
P

j Gi,j. A vector g̃ of graph Laplacian scores is derived from
the following optimization problem (Zhou et al., 2004),

ming̃

X

i,j

Ḡi,j(g̃i � g̃j)
2 +

1� �

�

X

i

(g̃i � gi)
2 (1)

In equation (1), the first term is a smoothness penalty, which forces
connected genes to receive similar scores, and the second term ensures
the consistency with the query gene set. The Laplacian scores combine the
neighboring information in the network with the consistency with the query
gene set to provide a global relevance measure between each gene and the
query gene set. Parameter � ⇥ (0,1) balances the contributions from the

two penalties. The closed-form solution of equation (1) is

g̃ = (1� �)(I� �Ḡ)�1g. (2)

Empirically, to avoid computing the inverse of (I� �Ḡ), an iterative
algorithm can efficiently compute the closed-form solution with the
following update rule at each time step t,

g̃t = (1� �)g + �Ḡg̃t�1, (3)

Similarly, graph Laplacian scores can be derived to measure the relevance
between the phenotypes and the target phenotypes p with optimization of

minp̃

X

i,j

P̄i,j(p̃i � p̃j)
2 +

1� ⇥

⇥

X

i

(p̃i � pi)
2, (4)

with the closed-form solution

p̃ = (1� ⇥)(I� ⇥P̄)�1p, (5)

where P̄ is the normalized P and ⇥ ⇥ (0,1) is the balancing parameter.
Computing the laplacian scores is equivalent to a weighted summation of
performing random walk on the graph from one step to infinite step. Thus,
the laplacian scores exploit modular information in a network to capture long
range interactions between the nodes in a graph. Note that one can use other
scoring functions such as counting the direct neighbors of the query gene
set, or measuring the shortest path from the query gene set to other genes as
suggested in Wu et al. (2008). However, empirically, the direct-neighbor
function tends to generate very sparse information, and the shortest-path
function does not fully explore the neighborhood information.

2.3 Rank Coherence in Networks
Rank Coherence in Networks (rcNet) measures whether the query gene
set g and a phenotype set p show coherent associations with the known
disease-gene associations. Specifically, given the graph Laplacian scores
g̃, which rank the genes by their relevance to the query gene set g,
and the graph Laplacian scores p̃, which rank the disease phenotypes
by their relevance to the hidden target phenotypes p, Rank Coherence
in Networks rcNet(g̃, p̃,A) measures whether the associations given
by A are connecting genes and phenotypes with similar scores in g̃ and
p̃. We propose two different approaches to define Rank Coherence in
Networks. The first approach adopts a ridge regression model coupled with
label propagations to compute a closed-form solution of p, relaxed to real
numbers. The second approach uses simpler measures and enumerate all
possible p to find the best fitting for g.

2.3.1 A Ridge Regression Model Under the assumption that the
Laplacian score of a phenotype can be reconstructed by the linear
combination of the Laplacian scores of its gene neighbors in A, we can
formulate the following least-square cost function,

� = ||Ap̃� g̃||2. (6)

Eventually, we are interested in deriving p. After replacing g̃ with equation
(2) and p̃ with equation (5), we have the following regularization framework,

�(p) = ||(1� ⇥)A(I� ⇥P̄)�1p� (1� �)(I� �Ḡ)�1g||2 + ⇤||p||2,
(7)

where ||p||2 is a 2-norm regularizer and ⇤ is a small constant. Equation (7)
takes the standard form of ridge regression, and thus the closed-form solution
p⇤ can be derived by

p⇤ = (1� �)(ĀTĀ + ⇤I)�1ĀT(I� �Ḡ)�1g. (8)

where Ā = (1� ⇥)A(I� ⇥P̄)�1. Note that the solution p⇤ is a real
vector, which can be seen as an approximation of the binary vector p. A
simple post-processing is to select one or a few phenotypes that are assigned
with significantly larger scores as the phenotypes associated with the gene
set. The full algorithm to solve the ridge regression model is given in Fig. 2.
The steps at line 2, 3 and 4 require cubic matrix inversion algorithms. Thus,
the time complexity of rcNet algorithm is O(m3 + n3).
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dgsa rcNet enu(g, Ḡ, P̄,A, �, ⇥)

1 g̃ = (1� �)(I� �Ḡ)�1g

2 p = 0, s = 0

3 for i = 1 to n

4 pi = 1

5 p̃ = (1� ⇥)(I� ⇥P̄)�1p.
6 si = corr(Ap̃, g̃) or �

P
i,j Ai,j(p̃i � g̃j)

2

7 pi = 0

8 j = argmaxi si

9 pj = 1

10 return (p)

Fig. 3. rcNetcorr and rcNetlap Algorithms - Rank Coherence in Networks by
Enumeration.

2.3.2 Enumeration Methods The ridge regression model provides an
approximation solution, but if we are only interested in retrieving the most
relevant disease phenotype. We can simply go through each phenotype and
compute a score against the query gene set g for each case. Finally, the
phenotype with the largest score is chosen as the target phenotype. We
propose two functions to measure rcNet for this approach,

rcNetcorr(g̃, p̃,A) = corr(Ap̃, g̃), (9)

rcNetlap(g̃, p̃,A) = �
X

i,j

Ai,j(p̃i � g̃j)
2. (10)

Function rcNetcorr simply uses the Pearson correlation coefficient to check
the consistency between Ap̃ and g̃, similar to the concordance score
used by CIPHER (Wu et al., 2008). Function rcNetlap checks if the
neighboring genes and phenotypes in the association network are assigned
similar scores, and the smaller the disagreement, the higher the relevance.
This enumeration strategy is similar to CIPHER (Wu et al., 2008). The
advantages are the conceptual simplicity and the optimality of the exact
solution. The disadvantages are the computational cost incurred by the
repeated calculation of the association score for each possible combination
of the individual phenotypes, and the inflexibility to extend to more general
problem of finding multiple target phenotypes. The full algorithm to solve
the two enumeration models is given in Fig. 3. Inside the for-loop between
line 3 and 7, the rcNet score is computed for each configuration of p.
The overall time complexity of this algorithm is also O(m3 + n3) if
(1� �)(I� �P̄)�1 is precomputed. Note that this is the computational
cost by which we only want to retrieve one phenotype. If we want to explore
all possible configurations of p, the total cost is exponential in m.

3 RESULTS
The rcNet algorithms are first compared to other methods in
experiments of leave-one-out cross-validation and a task of
predicting recently discovered disease-gene associations with
OMIM data. The rcNet algorithms are then applied to validate
findings in datasets from GWAS, DNA copy number analysis, and
microarray gene expression profiling.

3.1 Preparing Networks
The disease phenotype network is an undirected graph with 5080
vertices representing OMIM disease phenotypes, and edges with
weights in [0,1]. The edge weights measure the similarity between

two phenotypes by their overlap in the text and the clinical synopsis
in OMIM records, calculated by text mining (van Driel et al., 2006).

The disease-gene associations are represented by an undirected
bipartite graph with edges connecting phenotype nodes with
their causative gene nodes. Two versions (May-2007 Version
and May-2010 Version) of OMIM associations were used in the
experiments (McKusick, 2007). The May-2007 Version contains
1393 associations between 1126 disease phenotypes and 916 genes,
and the May-2010 Version contains 2469 associations connecting
1786 disease phenotypes and 1636 genes. The May-2007 version
was used in the validation experiments on the OMIM data and
the GWAS datasets, and the May-2010 version was used in the
experiments on the DNA copy number and gene expression datasets.

Two gene networks were used in the experiments. The first
one was derived from the human protein-protein interaction (PPI)
network obtained from HPRD (Peri et al., 2003). The PPI network
contains 34,364 binary undirected interactions between 8919 genes.
This network was used in the experiments on the OMIM data. A
larger human functional linkage network (Huttenhower et al., 2009)
was used in the experiments on the GWAS, DNA copy number and
gene expression datasets. This network contains 24,433 genes and
around 60 million weighted edges. To reduce the computational
complexity, we applied a cutoff 0.6 on the edge weights to generate
a sparser network with around 7 million weighted edges.

3.2 Comparison with Other Methods and Evaluations
The rcNet algorithms were compared to CIPHER (Wu et al., 2008)
and Random Walk with Restart (label propagation) methods (Köhler
et al., 2008; Hwang and Kuang, 2010; Vanunu et al., 2010; Li and
Patra, 2010), since those methods reported the best performance
for disease gene prioritization. We adopted CIPHER with direct
neighbor (C-DN) or shortest path (C-SP) for disease phenotype and
gene set association analysis by averaging the correlations across
the genes in the query gene set. The Random Walk algorithm
described in Li and Patra (2010) (RWR) was chosen as the label
propagation method for comparison because it is straightforward
to use the model for disease phenotype and gene set association
analysis. The two hyper-parameters � and ⇥ for rcNet were chosen
from {0.1,0.5,0.9}, and a fixed small number ⇤ = 10�5 was
used for ridge regression in all experiments. The three balancing
parameters for RWR were also chosen from {0.1,0.5,0.9}. For
all the methods, the results produced by the best parameters in the
leave-one-out cross-validation were reported.

In all the experiments, a query gene set was used to rank all the
5080 disease phenotypes. The higher the target phenotype in the
ranking, the better the performance. We measured the performance
of a method with receiver operating characteristic (ROC) score,
also called area under curve (AUC). Since we are most interested
in whether the target phenotype is near the top, we report the
AUC up to the first 50 and 100 false positives. Another important
evaluation is how well a method selects highly coherent top-ranked
genes and top-ranked phenotypes since high coherence implies a
good utilization of known associations in the model. Specifically,
the top genes and phenotypes ranked by the query gene set and
the target disease phenotype contribute the largest penalties in the
cost functions, and connections between them cancel out the large
scores and results in a smaller penalty. To quantify the connectivity,
the top-r disease genes and the top-l disease phenotypes with
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matrix with D(i)
ll =

⇤
j W (i)

lj and D(i,j) is the diagonal
matrix with D(i,j)

ll =
⇤

p W (i,j)
lp .

Next we define graph laplacians on the subnetworks
in G. We introduce the graph laplacians in the normal-
ized form, since the unnormalized version is straightfor-
ward to derive from the normalized version [23]. Let the
normalized graph laplacian matrix of homo-subnetwork
G(i) be �(i) = I � S(i), where I is identity matrix.
The normalized graph laplacian matrix ⇥(i,j) of hetero-
subnetwork G(i,j) is defined as

⇥(i,j) = I �
�

0 S(i,j)

(S(i,j))T 0

⇥
.

Label propagation associated with the graph lapla-
cian of a single network through a regularization frame-
work [3] ignores the di⇤erence among the subnetworks
in a heterogeneous network. In a complex heteroge-
neous network, each subnetwork has a specific graph
laplacian that needs to be normalized and explored in-
dependently. Thus, a regularization framework on the
single network is not appropriate for label propagation
on a heterogeneous network.

3 MINProp Algorithm
In this section, we first introduce the MINProp algo-
rithm for propagating information between subnetworks
in a heterogeneous network and then develop a regular-
ization framework for MINProp.

3.1 Mutual Interaction-based Propagation
To handle label propagation on a complex heteroge-
neous network, MINProp sequentially performs network
propagations on each individual homo-subnetwork with
the current label information derived from the other
homo-subnetworks and repeats this step until conver-
gence. The MINProp algorithm performs label propa-
gation on the ith homo-subnetwork G(i) = (V (i), E(i))
sequentially for i = 1...k. The label propagation on
each homo-subnetwork is the same as that in the algo-
rithms for a single network in Equation (2.1), but the
initialization of the vertices in G(i) is a combination of
the initial labeling of the vertices and the current label-
ing of the vertices in the other homo-subnetworks. The
labeling information on the other homo-subnetworks is
collected as the mutual interactions through G(i,j) =
(V (i)

⌅
V (j), E(i,j))(1 ⇥ j ⇥ k and i ⇤= j), the hetero-

subnetworks between the ith homo-subnetwork and the
other homo-subnetworks. The mutual interaction infor-
mation between G(i) and the other homo-subnetworks
is collected as ⇧

j ⇤=i

S(i,j)fj ,

where fj is the current labeling of V (j). The intro-
duction of the labeling information though the hetero-
subnetworks can capture the bicluster structures be-
tween the vertices in each pair of the subnetworks.
The complete MINProp algorithm is described in Al-
gorithm 1.

Algorithm 1 MINProp
Input
k: number of homo-subnetworks
⇥: convergence threshold
y1, y2, ..., yk: vectors of initial label values
�1, �2, ...,�k: di⇤usion parameters
S(1), S(2), ..., S(k): homo-subnetwork matrices
S(1,2), ..., S(k�1,k): hetero-subnetwork matrices

Output
f1, f2, ..., fk: vectors of final label values

1: fi = 0 for i = 1...k;
2: do
3: fold

i = fi for i = 1...k;
4: for i = 1...k
5: t = 0, f0

i = 0;
6: y⇥ = 1�k�i

1��i
yi + �i

1��i

⇤
j ⇤=i S(i,j)fj ;

7: do
8: t = t + 1;
9: f t

i = (1� �i)y⇥ + �iS(i)f t�1
i ;

10: while(⇧ f t
i � f t�1

i ⇧> ⇥);
11: fi = f t

i ;
12: end for
13: while (⌅i s.t. ⇧ fi � fold

i ⇧> ⇥);
14: return f1, f2, ..., fk;

The normalized weighted graphs (S(i) and S(i,j)) of
all homo-subnetworks and hetero-subnetworks are pre-
computed as described in section 2.2 as inputs. There
are three loops in the main body of the MINProp
algorithm. The outer do-while-loop between line 2
and line 13 checks if the label values have converged
on each of the k homo-subnetworks. The convergence
is defined as the 2-norm of the score change after
one iteration is less than a threshold ⇥. The second
outer for-loop between line 4 and line 12 sequentially
goes through each homo-subnetwork. The inner do-
while-loop between line 7 and line 10 is similar to the
algorithm in [23]. In line 6, for each vertex in G(i),
the initial labeling y⇥ is initialized as the addition of
its initial label score and the label of its immediate
neighbors in the other homo-subnetworks. The iterative
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Fig. 3. rcNetcorr and rcNetlap Algorithms - Rank Coherence in Networks by
Enumeration.

2.3.2 Enumeration Methods The ridge regression model provides an
approximation solution, but if we are only interested in retrieving the most
relevant disease phenotype. We can simply go through each phenotype and
compute a score against the query gene set g for each case. Finally, the
phenotype with the largest score is chosen as the target phenotype. We
propose two functions to measure rcNet for this approach,

rcNetcorr(g̃, p̃,A) = corr(Ap̃, g̃), (9)

rcNetlap(g̃, p̃,A) = �
X

i,j

Ai,j(p̃i � g̃j)
2. (10)

Function rcNetcorr simply uses the Pearson correlation coefficient to check
the consistency between Ap̃ and g̃, similar to the concordance score
used by CIPHER (Wu et al., 2008). Function rcNetlap checks if the
neighboring genes and phenotypes in the association network are assigned
similar scores, and the smaller the disagreement, the higher the relevance.
This enumeration strategy is similar to CIPHER (Wu et al., 2008). The
advantages are the conceptual simplicity and the optimality of the exact
solution. The disadvantages are the computational cost incurred by the
repeated calculation of the association score for each possible combination
of the individual phenotypes, and the inflexibility to extend to more general
problem of finding multiple target phenotypes. The full algorithm to solve
the two enumeration models is given in Fig. 3. Inside the for-loop between
line 3 and 7, the rcNet score is computed for each configuration of p.
The overall time complexity of this algorithm is also O(m3 + n3) if
(1� �)(I� �P̄)�1 is precomputed. Note that this is the computational
cost by which we only want to retrieve one phenotype. If we want to explore
all possible configurations of p, the total cost is exponential in m.

3 RESULTS
The rcNet algorithms are first compared to other methods in
experiments of leave-one-out cross-validation and a task of
predicting recently discovered disease-gene associations with
OMIM data. The rcNet algorithms are then applied to validate
findings in datasets from GWAS, DNA copy number analysis, and
microarray gene expression profiling.

3.1 Preparing Networks
The disease phenotype network is an undirected graph with 5080
vertices representing OMIM disease phenotypes, and edges with
weights in [0,1]. The edge weights measure the similarity between

two phenotypes by their overlap in the text and the clinical synopsis
in OMIM records, calculated by text mining (van Driel et al., 2006).

The disease-gene associations are represented by an undirected
bipartite graph with edges connecting phenotype nodes with
their causative gene nodes. Two versions (May-2007 Version
and May-2010 Version) of OMIM associations were used in the
experiments (McKusick, 2007). The May-2007 Version contains
1393 associations between 1126 disease phenotypes and 916 genes,
and the May-2010 Version contains 2469 associations connecting
1786 disease phenotypes and 1636 genes. The May-2007 version
was used in the validation experiments on the OMIM data and
the GWAS datasets, and the May-2010 version was used in the
experiments on the DNA copy number and gene expression datasets.

Two gene networks were used in the experiments. The first
one was derived from the human protein-protein interaction (PPI)
network obtained from HPRD (Peri et al., 2003). The PPI network
contains 34,364 binary undirected interactions between 8919 genes.
This network was used in the experiments on the OMIM data. A
larger human functional linkage network (Huttenhower et al., 2009)
was used in the experiments on the GWAS, DNA copy number and
gene expression datasets. This network contains 24,433 genes and
around 60 million weighted edges. To reduce the computational
complexity, we applied a cutoff 0.6 on the edge weights to generate
a sparser network with around 7 million weighted edges.

3.2 Comparison with Other Methods and Evaluations
The rcNet algorithms were compared to CIPHER (Wu et al., 2008)
and Random Walk with Restart (label propagation) methods (Köhler
et al., 2008; Hwang and Kuang, 2010; Vanunu et al., 2010; Li and
Patra, 2010), since those methods reported the best performance
for disease gene prioritization. We adopted CIPHER with direct
neighbor (C-DN) or shortest path (C-SP) for disease phenotype and
gene set association analysis by averaging the correlations across
the genes in the query gene set. The Random Walk algorithm
described in Li and Patra (2010) (RWR) was chosen as the label
propagation method for comparison because it is straightforward
to use the model for disease phenotype and gene set association
analysis. The two hyper-parameters � and ⇥ for rcNet were chosen
from {0.1,0.5,0.9}, and a fixed small number ⇤ = 10�5 was
used for ridge regression in all experiments. The three balancing
parameters for RWR were also chosen from {0.1,0.5,0.9}. For
all the methods, the results produced by the best parameters in the
leave-one-out cross-validation were reported.

In all the experiments, a query gene set was used to rank all the
5080 disease phenotypes. The higher the target phenotype in the
ranking, the better the performance. We measured the performance
of a method with receiver operating characteristic (ROC) score,
also called area under curve (AUC). Since we are most interested
in whether the target phenotype is near the top, we report the
AUC up to the first 50 and 100 false positives. Another important
evaluation is how well a method selects highly coherent top-ranked
genes and top-ranked phenotypes since high coherence implies a
good utilization of known associations in the model. Specifically,
the top genes and phenotypes ranked by the query gene set and
the target disease phenotype contribute the largest penalties in the
cost functions, and connections between them cancel out the large
scores and results in a smaller penalty. To quantify the connectivity,
the top-r disease genes and the top-l disease phenotypes with
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