Interactome networks for the system biology of complex disease

Tae Hyun Hwang, PhD Biostatistics and Bioinformatics, Masonic cancer Center University of Minnesota Twin Cities

통계유전학 워크샵

Background

• Phenotype

- The set of observable characteristics of an individual resulting from the interaction of its genotype with environment
- Phenotypes could be either disease phenotypes or any observable characteristics

Eye color

Blond hair

Background

- Phenotype-genotype association
 - Identify genetic variations affecting the phenotypic changes on a genome-scale
 - What/How can genetic variation affect to develop phenotypes

Blond hair

Applications and Significance

- Understanding of how genome determines important phenotypes could lead to ...
 - Find genes to develop new drug targets and treatments
 - Genetic engineering of yeast ethanol
 - Improve food production
 - and more ...

Time and Cost of Drug Discovery

From Genentech

- Time: ~ 10 years
- Cost: ~ 2 billions (US dollors)
- Human resource: ~ 200 PhDs
- and more
- But, no guarantee that candidate drug will be approved by FDA

Traditional approach

- Phenotype-genotype association study
 - Introduce genetic variations into model, and validate it in vivo and in vitro

[B Cho & B Palsson, "Probing the basis for genotype-phenotype relationships", Nature methods 2009]

Traditional approach

- Phenotype-genotype association study
 - Introduce genetic variations into model, and validate it in vivo and in vitro

connection between genotype and phenotype are **Time consuming** and **Labor-intensive**"

[B Cho & B Palsson, "Probing the basis for genotype-phenotype relationships", Nature methods 2009]

High-throughput approach

High-throughput technologies can improve the process of new drug development?

Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011; 17(3): 297-303.

Network-based approach

 Network-based approach can help to boost disease gene discovery

Disease gene and pathway discovery

Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways Cell 145, 513–528, May 13, 2011 ©2011 Elsevier Ind

Next-generation sequencing data analysis

Exome sequencing and disease-network analysis of a single family implicate a mutation in *KIF1A* in hereditary spastic paraparesis

Yaniv Erlich, Simon Edvardson, Emily Hodges, et al.

Genome Res. 2011 21: 658-664 originally published online April 12, 2011 Access the most recent version at doi:10.1101/gr.117143.110

Genomic data integration **Theory**

Cell

An Integrated Approach Cell 143, 1005–1017, December 10, 2010 ©2010 Elsevier Inc. to Uncover Drivers of Cancer

Network-based approach

- Network-based approach can help to boost disease gene discovery
 - Disease gene prioritization

Computational tools for prioritizing candidate genes: boosting disease gene discovery *Nature Reviews Genetics* | 1

NATURE REVIEWS | GENETICS

Nature Reviews Genetics | AOP, published online 3 July 2012; doi:10.1038/nrg3253

Functional enrichment analysis

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 19 2011, pages 2692–2699 doi:10.1093/bioinformatics/btr463

Systems biology

Advance Access publication August 8, 2011

Inferring disease and gene set associations with rank coherence in networks

 and many (gene function prediction, drug target prediction, the pathological analysis of human disease)

Network medicine: a network-basedInteractome Networks and Human Diseaseapproach to human diseaseCell56 | JANUARY 2011 | VOLUME 12Leading Edge

Today's topic

Disease phenotype-gene association study

 Identify genetic variations affecting the phenotypic changes on a genome-scale

Applications

- I. Disease gene prediction
 - Predict candidate disease genes associated with a query disease phenotype
- 2. Predicting phenotypic/functional impact of candidate disease genes
 - Give a gene (or a set of genes), predict its target disease phenotypes/functions

Today's topic

Disease phenotype-gene association study

 Identify genetic variations affecting the phenotypic changes on a genome-scale

Applications

- I. Disease gene prediction
 - Predict candidate disease genes associated with a query disease phenotype
- 2. Predicting phenotypic/functional impact of candidate disease genes
 - Give a gene (or a set of genes), predict its target disease phenotypes/functions

Disease gene prediction

Online Medelian Inheritance in Man Statistics (April 29, 2010)

 3775 out of 6543 disease phenotypes are still not known for their causative disease genes, and underlying genetic basis

When we need computational approaches ?

- Not enough experimental data
 - Small sample size
- Too many candidate biomarker
 - I000 mutations from next-generation sequencing data
- For the use of prior knowledge
 - I know some important genes for phenotype X
- and many ...

Disease gene discovery methods

Data driven method

- Integrate experimental, sequence, and other biological data
 - Ex) Endeavour

Network-based method

Use molecular interaction networks (e.g., protein-protein interaction networks)

Integrated network-based method

Integrate multiple interactome networks data (e.g., disease network, disease-gene association network and PPI networks)

Disease gene discovery methods

Data driven method

- Integrate experimental, sequence, and other biological data
 - Ex) Endeavour

Network-based method

Use molecular interaction networks (e.g., protein-protein interaction networks)

Integrated network-based method

Integrate multiple interactome networks data (e.g., disease network, disease-gene association network and PPI networks)

Background

Various types of 'omics result in more information than we can easily handle

Protein domain database

Sequence database

and etc

 Leverage knowledge of each genomic resource to improve the ability for disease gene discovery

Endeavour

- Input: known genes (training), a set of candidate disease genes
- Output: a list of ranked candidate genes

Endeavour workflow

Validation

- Leave-one out cross validation
 - One gene is deleted from training genes (or known disease genes) as a test gene, and added to random test genes
 - Compare rankings of the test genes and random test genes

Validation

- Leave-one out cross validation
 - One gene is deleted from training genes (or known disease genes) as a test gene, and added to random test genes
 - Compare rankings of the test genes and random test genes
- Experimental validation
 - A knockdown of YPEL1 results in changes in the pharyngeal arches

Validation

- Leave-one out cross validation
 - One gene is deleted from training genes (or known disease genes) as a test gene, and added to random test genes
 - Compare rankings of the test genes and random test genes

Control

Advantage: easy to perform analysis
 Disadvantage:

 not easy to find good training genes,
 hard to interpret findings biologically

Endeavour website

Starting from a locus reported to be associated with DiGeorge syndrome and using Endeavour, we were able to propose YPEL1 as an interesting candidate. We further showed that YPEL1 knock-out zebrafish embryos exhibit features that are compatible with the human DiGeorge phenotypes. More recently, we have used Endeavour to optimize a genetic screen in Drosophila melanogaster in which we aimed at discovering novel in vivo interactions with the developmental gene atonal. Starting from 180 deficiency lines, we identified 12 positives loci harboring more than 1100 genes in total. These loci were prioritized using Endeavour and only the genes in the top 30% were assayed resulting in the identification of 12 positive genes. Researchers have also used Endeavour to look for genes involved in cleft lip / cleft palate from aCGH data, and to analyze the proteome of adipocytes. Please browse our reference section to find a list of Endeavour related publications.

Data

Data from multiple heterogeneous sources are collected and integrated in our databases in order to perform gene prioritization. This includes sequence data (genomic sequences of the genes and protein sequences of their products), expression data (usually EST data or large data sets covering the expression of

thousands of genes over a wide range of different tissues/samples), functional annotations (usually from ontologies designed to describe the function of the gene products, their cellular localization, and the biomolecular pathways they are involved in), protein-protein interaction networks (describing which products interact with which other products either physically or mation contained in the scientific literature, it

Waiting for homes.esat.kuleuven.be..

Softwares

We have implemented the basic algorithm into an application termed Endeavour, It is a Java based client that can be started via Java Web Start. More

recently, we have developed a web version that is more user friendly. However, it does not include all the options available in the Java client. Both tools are using the same core and thus give exactly the same results when running the same prioritization. The development of the kernel based application (with an improved performance) is on its way and should be made available during fall this year.

Open Endeavour website

does not include all the options available in the Java client. Both tools are using the same core and thus give exactly the same results when running the same prioritization. The development of the kernel based application (with an improved performance) is on its way and should be made available during fall this year.

expression data (usually EST data or large data sets covering the expression of

thousands of genes over a wide range of different tissues/samples), functional annotations

(usually from ontologies designed to describe the function of the gene products, their cellular

localization, and the biomolecular pathways they are involved in), protein-protein interaction networks (describing which products interact with which other products either physically or

mation contained in the scientific literature, it

Open Endeavour website

Endeavour

Candidate genes prioritization through genomic data fusion

You are here on the web client version of Endeavour. For an introduction, latest news, academic or commercial use, contact info, mailing list, please refer to the Endeavour project main page.

How to cite

- ENDEAVOUR update: a web resource for gene prioritization in multiple species. Tranchevent L., Barriot R., Yu S., Van Vooren S., Van Loo P., Coessens B., Aerts S., De Moor B., Moreau Y. Nucleic Acids Research, Web Server issue, vol. 36, no. 1, Jun. 2008, pp. 377-384. Abstract
- Gene prioritization through genomic data fusion. Aerts S., Lambrechts D., Maity S., Van Loo P., Coessens B., De Smet F., Tranchevent L-C., De Moor B., Marynen P., Hassan B., Carmeliet P. & Moreau Y. Nature Biotechnology. [2006] May;24(5):537-544. PMID: 16680138] Abstract

Prioritize candidate genes

A manual is available here. If this is your first visit, you may try out some examples:

- YPEL1 taken from our <u>Nature biotech</u>, paper on DiGeorge syndrome candidate genes.
- KCNJ5 taken from the Elbers et al review on obesity and diabetes. ٠
- DFNB31 based on the Ebermann et al paper describing the discovery of a novel Usher gene.

Clicking on the gene name (YPEL1, KCNJ5 or DFNB31) will cause the training and the candidate genes to be loaded in the following wizard; this will also select the most appropriate data sources. Then you should go over the different steps ('Next' button, enabled once the training and candidate genes are loaded) to revise the settings and launch the prioritization.

Prioritize your candidates in 4 steps with the following wizard

1. Species 2. Training genes 3. Data sources used to build models 4. Candidates

Candidate genes to prioritize (3 genes)						
	R	Gene (Reference ID)	Alias	Description		
ENSG000001493		ENSG00000149311	АТМ	Serine-protein kinase ATM (EC 2.7.11.1) (Ataxia telangiectasia mutated) (A-T, mutated). [Source:Uniprot/SWISSPROT;Acc:Q13315]		
	0	ENSG00000136997	97 MYC Myc proto-oncogene protein (c-Myc) (Transcription factor p64). [Source:Uniprot/SWISSPROT;Acc:P01106]			
	0	EN5G00000141736	ERBB2	Receptor tyrosine-protein kinase erbB-2 precursor (EC 2.7.10.1) (p185erbB2) (C-erbB-2) (NEU proto-oncogene) (Tyrosine kinase-type cell surface receptor HER2) (MLN 19) (CD340 antigen). [Source:Uniprot/SWISSPROT;Acc:P04626]		

Add following candidates

ATM MYC ERBB2	Add
 Full genome 	Cinc

« Previous Launch prioritization

Ready

Useful resource

http://homes.esat.kuleuven.be/~bioiuser/gpp/index.php

<u>Tranchevent LC., Bonachela Capdevila F., Nitsch D.</u>, De Moor B., De Causmaecker P., Moreau Y. A guide to web tools to prioritize candidate genes. *Brief. Bioinform.* (2010) link to paper

Useful resource

Nature Reviews Genetics | AOP, published online 3 July 2012; doi:10.1038/nrg3253

REVIEWS

Computational tools for prioritizing candidate genes: boosting disease gene discovery

Yves Moreau and Léon-Charles Tranchevent

Abstract | At different stages of any research project, molecular biologists need to choose — often somewhat arbitrarily, even after careful statistical data analysis — which genes or proteins to investigate further experimentally and which to leave out because of limited resources. Computational methods that integrate complex, heterogeneous data sets such as expression data, sequence information, functional annotation and the biomedical literature — allow prioritizing genes for future study in a more informed way. Such methods can substantially increase the yield of downstream studies and are becoming invaluable to researchers.

Background

- Genes/proteins interact with each other in the network tend to have similar biological processes and functions
- Identification of subnetworks containing a set of disease genes with novel candidate disease genes could help to improve the ability of disease gene discovery

- Two approaches
 - Molecular networks
 - Integrated networks

Wang et al., Network-based methods for human disease gene discovery, Briefings in Functional Genomics and Proteomics 2011

- Network-based methods for the use of molecular interaction networks
 - Input: known genes (training), a set of candidate loci, molecular network
 - Output: a list of ranked candidate genes

Network based method Network-based methods for the use of molecular interaction networks

Koller et al., Walking the interactome for prioritization of candidate disease genes, Am J Hum Genet. 2008 Apr;82(4):949-58. Epub 2008 Mar 27.

- Network-based methods for the use of integrated networks (e.g., disease phenotype similarity networks, disease-gene association networks, gene-gene interaction networks)
 - Input: a query disease phenotype
 - Output: a list of ranked candidate genes
Motivation

- Modular view of disease and gene networks
 - Phenotypically similar diseases are caused by functionally related genes

Oti M, Brunner HG, The modular nature of genetic disease, Clinical Genetics 2007

Public database

- Disease phenotype database
 - Online Mendelian Inheritance in Man (OMIM)

S NCBI Online Mendelian Inheritance in Man Dublod	My NCBI [Sign In] [Re	Table of Contents
Online Mendelian Inheritance in Man Display All Databases PubMed Nucleoidé Protein Genome PMC OMIN Search OMIM for Genome Structure PMC OMIN Search OMIM for Genome Structure PMC OMIN Search OMIM for Genome Genome Structure PMC OMIN Search OMIM for Genome Genome Genome Structure PMC OMIN Search OMIM Onitor Genome Genom Genom Genome Genom	Table of Contents MIM #114480 Text Description Clinical Features Other Features Inheritance Diagnosis Clinical Management Mapping Cytogenetics Molecular Genetics Pathogenesis Animal Model History Clinical Synopsis See Also References Contributors Creation Date	MIM #114480 Text Description Clinical Features Other Features Inheritance Diagnosis Clinical Management Mapping Cytogenetics Molecular Genetics Pathogenesis Animal Model History Clinical Synopsis Sor Also
- OMIM, dbSNP, GWAS,	literature,	Contributors Creation Date and etc.

- Gene-gene interaction networks
 - Protein-interaction, co-expression, and etc.,

Disease network

- Node: disease phenotype in OMIM
- Edge: phenotypical similarity calculated by text mining* with OMIM database (weights > 0.4)

Bone	
Cancer	
Cardiovascular	
Connective tissue	2
Connective tissue	
Dermatological	
Developmental	
Ear,Nose,Throat	
Endocrine	
Gastrointestinal	
Hematological	
Immunological	
Metabolic	
Muscular	
Neurological	2
Nutritional	
Ophthamological	
Psychiatric	
Renal	
Respiratory	8
Skeletal	
Unclassified	
multiple	

Disease class annotation from Goh et. al, PNAS 2007

*Marc Driel, et al. "A text-mining analysis of the human phenome", European Journal of Human Genetics 2006

Challenge

"One challenge computationally is integrating heterogeneous data sets to build a network model" - Ilya Shmulevich, Institute for System Biology, Nature 2010

Disease-gene association network OMIM dbGaP GWAS

Gene interaction network Protein interaction network Co-expression Genetic interaction network

Challenge

- Generalizability and scalability
 - Efficient optimization
- Provable theoretical guarantees
 - Consistency, convergence rate, etc
- Interpretability
 - Biologically interpretable

Disease network text mining from OMIM comordity from patients records microarray gene expression

Disease-gene association network

OMIM dbGaP GWAS Gene interaction network Protein interaction network Co-expression Genetic interaction network

Data integration

- Different network data could be combined as an integrated heterogeneous network
- Exploring cluster structures in each network independently

T. Hwang, and Rui Kuang, "A heterogeneous label propagation for disease gene discovery". SDM 2010

Problem formulation

- Given: an integrated heterogeneous network and a query disease phenotype
- Task: predict candidate disease causative genes of the query disease phenotype
 - Input: initial activation values on the query node
 - Output: a ranked gene list based on final activation values
 - Q: Find candidate disease genes associated with a query disease phenotype

T. Hwang, and Rui Kuang, "A heterogeneous label propagation for disease gene discovery". SDM 2010

Working example (1/5)

- Q: Find candidate disease genes associated with a query disease phenotype
- 1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)

Working example (2/5)

- Q: Find candidate disease genes associated with a query disease phenotype
- 1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)
- 2. Run label propagation on each network interactively
 - Run label propagation on disease network with initialization from gene network

Working example (3/5)

- Q: Find candidate disease genes associated with a query disease phenotype
- 1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)
- 2. Run label propagation on each network interactively
 - Run label propagation on gene network with initialization from disease network

Working example (4/5)

- Q: Find candidate disease genes associated with a query disease phenotype
- 1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)
- 2. Run label propagation on each network interactively
 - Repeat until activation values on all nodes converge

Working example (5/5)

- Q: Find candidate disease genes associated with a query disease phenotype
- 1. Initialize activation values on nodes (i.e. query node: 1 and others: 0)
- 2. Run label propagation on each network interactively
- 3. Analysis: Rank genes based on their final activation values
 - Highly ranked genes can be candidate disease genes of query disease

Data preparation

- 1. Disease phenotype similarity network
 - 5080 disease phenotypes
 - Edges are weighted by pairwise disease similarities among 5080 disease phenotypes calculated by text mining techniques [Marc Driel, et al., European Journal of Human Genetics 2006]
- 2. Disease-gene association network [OMIM database., May 2007]
 - an undirected bi-partite graph with disease and gene vertices
 - 1126 disease-gene associations

- 3. Protein interaction networks [HPRD database., May 2007]
 - 8919 proteins are mapped to human genes
 - 34364 binary-valued undirected interactions between 8919 proteins
 - Self-interactions are removed

Case study (1/2)

Experimental setup

- ✓ Use old-version of disease-gene associations (before May 2007) to predict new disease genes for disease phenotype
- ✓ Compare prediction results with recent association data (April 2010)
 - 538 new associations
 - 404 associations between newly discovered disease genes and disease phenotypes
 - 134 associations between known disease genes and disease phenotypes

Case study (2/2)

 Our approach is capable to identify true disease causative genes of disease phenotypes

MIM#	Phenotype Name	HGNC symbol	Ranking MINProp	Ranking CIPHER SP	Ranking PRINCE	Status
		MLFI	3	4323	4323	new
601676		JAK2	5	354	280	new
001020	LEOREMIA, ACOTE MIELOID	ETV6	23	769	769	new
		GMPS	245	4512	4512	new
300299	NEUTROPENIA	WAS	l	1656	30	known
		VHL		1105	1105	new
171300 PH	PHEOCHROMOCYTOMA	GDNF	16	1400	1400	known
		KIF1B	228	512	512	new
607174 MENINGION		NF2		1279	1279	known
		PTEN	5	1307	1307	known
166710 OSTEOPOROSIS		LRP5	2	1541	1541	known
	OSTEODODOSIS	CALCR	4	7661	7661	new
	031207000313	COL1A1	5	8086	8086	known
		VDR	42	1402	1402	known
202300	ADRENOCORTICAL CARCINOMA	TP53	l	1249	430	known
601267		PRKCH	14	448	448	new
601367	STROKE, ISCHEMIC	ALOX5AP	154	7892	7892	known

Leave-one out cross validation

1. Uncovering associations with known disease genes

Ex) **Remove the direct association** btw ESR1 and breast cancer (keep the association btw ESR1 and ovarian cancer)

2. Discovering associations with unknown disease genes

Ex) **Remove all association** btw ESR1 and other disease

Ranking diseaes genes

 Overall, MINProp achieved best performances in leave one out cross validation for two experiments set-up

Methods	Known disease genes Avg. AUC (win/draw/loss)	New disease genes Avg. AUC (win/draw/loss)
MINProp vs. PRINCE	0.805 vs. 0.785 (796/24/306)	0.728 vs. 0.703 (642/8/476)
MINProp vs. Random Walk	0.805 vs. 0.797 (738/75/313)	0.728 vs. 0.648 (1045/2/79)
MINProp vs. CIPHER-DN	0.863 vs. 0.738 (565/5/288)	0.821 vs. 0.738 (515/11/332)
MINProp vs. CIPHER-SP	0.805 vs. 0.734 (678/8/440)	0.728 vs. 0.729 (538/54/534)

Associations with new disease genes

Exploring modularity of genes

- How well the method could explore modular structures (i.e., cluster or subnetwork) of genes?
 - ✓ In most of most cases that disease genes of query phenotypes have higher clustering coefficients, MINProp performs better that that of baselines
 - ✓ Hybrid case shows better performances against MINProp

CC	MINProp vs. PRINCE	MINProp vs. C-DN	MINProp vs. C-SP	Hybrid vs. MINProp
CC	Avg. AUC	Avg. AUC	Avg. AUC	Avg. AUC
[0.1, 1]	0.875 vs. 0.854	0.889 vs. 0.855	0.875 vs. 0.813	0.886 vs. 0.875
[0.01, 0.1)	0.902 vs. 0.886	0.906 vs. 0.799	0.902 vs. 0.801	0.911 vs. 0.902
[0, 0.1)	0.653 vs. 0.626	0.770 vs. 0.688	0.654 vs. 0.693	0.692 vs. 0.654
Total	0.728 vs. 0.703	0.821 vs. 0.738	0.728 vs. 0.729	0.756 vs. 0.727

* Higher average clustering coefficients of disease genes indicate strong modularity of genes in the protein interaction network

Today's topic

Disease phenotype-gene association study

 Identify genetic variations affecting the phenotypic changes on a genome-scale

Applications

- I. Disease gene prediction
 - Predict candidate disease genes associated with a query disease phenotype
- 2. Predicting phenotypic/functional impact of candidate disease genes
 - Give a gene (or a set of genes), predict its target disease phenotypes/functions

Inferring disease and gene set association Background

- Numerous genome-scale disease studies are conducted to discover candidate disease causing genes
- Overrepresentation based gene set enrichment analysis widely used for validation for their findings
 - ✓ GSEA (Broad), DAVID (NIH), and etc.

Challenge

- Current knowledge for gene function, pathway, and disease genes are still incomplete
- Novel disease susceptibility genes are often not well characterized and studied (e.g. unknown for their functions, pathways and associations with disease)
 - Ex) Only less than one-quarter of significantly altered copy number regions contain previously validated cancer-causing genes. [Beroukhim et al., Nature 2010]

Challenge

Current knowledge for gene function, pathway, and disease genes are still incomplete

 Novel disease susceptibility genes are often not well characterized and studied (e.g. unknown for their functions, pathways and acceptions with disease)
 What if candidate disease genes interact with genes in the reference gene set?

 By querying the networks with a given gene set, we want to retrieve a list of disease phenotypes with the highest predicted association with the gene set.

Two rankings between disease gene and its target disease are coherent!

 By querying the networks with a given gene set, we want to retrieve a list of disease phenotypes with the highest predicted association with the gene set.

Two rankings between disease gene and its target disease are coherent!

• Objective: Given a query gene set, find a disease phenotype maximizing coherence between rankings of disease gene, and its target disease

• Objective: Given a query gene set, find a disease phenotype maximizing coherence between rankings of disease gene, and its target disease

• Objective: Given a query gene set, find a disease phenotype maximizing coherence between rankings of disease gene, and its target disease

Real example

- Query novel breast cancer susceptibility genes from recent GWAS to predict target disease phenotype (breast cancer)
 - Genes in the query gene set are not known for any associations with any disease phenotypes

Data preparation

- 1. Disease phenotype similarity network
 - 5080 disease phenotypes
 - Edges are weighted by pairwise disease similarities among 5080 disease phenotypes calculated by text mining techniques [Marc Driel, et al., European Journal of Human Genetics 2006]
- 2. Disease-gene association network [OMIM database., May 2007]
 - an undirected bi-partite graph with disease and gene vertices
 - 1126 disease-gene associations

- 3. Protein interaction networks [HPRD database., May 2007]
 - 8919 proteins are mapped to human genes
 - 34364 binary-valued undirected interactions between 8919 proteins
 - Self-interactions are removed
- 4. Functional linkage networks [Huttenhower et al., 2009]
 - 24,433 genes in the network
 - 60 million weighted (undirected)
 interactions between 24,433 genes
 - Self-interactions are removed

Experiments

Baselines

- Cipher [Wu et al, Molecular System Biology 2009]
- Random walk restart [Y Li, Bioinformatics 2010]

Task

- Given a query disease gene set, find target disease phenotype
 - rank candidate target diseases of the query gene set

Validations

- Leave-one-out cross-validations
- Case study
 - recent OMIM
 - GWAS
 - Copy number data
 - Gene expression data

*The classification performance of all methods are evaluated using area under the receiver operating characteristics (ROC) score.

Leave one out cross validation

GWAS experiments

• Query novel disease susceptibility genes from recent GWAS to predict the disease phenotype

- Q) How a set of novel candidate disease genes from GWAS affects to disease phenotypes?

Table 2. Ranking the target disease phenotype of the disease susceptibility genes identified from GWAS. The disease categories in the first column are based on the definition in Goh *et al.* (2007). In the third column, the PubMed IDs marked with '*' denote multiple GWASs for a disease/trait. Refer to supplementary Table for the results of the full list of the GWAS cases.

Cotogory	Disease/Trait	PubMed Index	OMIM Indox	Gene Set	Rank by	Rank by	Rank by
Category				Size	rcNet	$rcNet_{corr}$	$rcNet_{lap}$
	Prostate cancer	20676098*	176807	15	2 (0.03%)	2 (0.03%)	2 (0.03%)
	Breast cancer	20872241*	113705	26	7 (0.1%)	51 (1%)	43 (0.8%)
	Basal cell carcinoma (cutaneous)	18849993	605462	5	7 (0.1%)	189 (3.7%)	228 (4.5%)
	Basal cell carcinoma (cutaneous)	18849993	604451	5	90 (2%)	202 (4%)	256 (5%)
Cancer	Urinary bladder cancer	18794855	109800	1	14 (0.2%)	48 (0.9%)	60 (1.1%)
	Acute lymphoblastic leukemia (childhood)	20670164*	159555	3	19 (0.04%)	51 (1.0%)	45 (0.8%)
	Lung cancer	20304703*	211980	12	22 (0.4%)	587 (12%)	1610 (32%)
	Lung adenocarcinoma	20871597*	211980	6	52 (1%)	838 (16%)	1815 (36%)
WAY SHELL	Chronic lymphocytic leukemia	20062064*	151430	14	57 (1%)	318 (6.3%)	306 (6%)
	Neuroblastoma (high-risk)	19412175	600613	1	143 (3%)	110 (2%)	138 (3%)
	Systemic lupus erythematosus	20169177*	152700	10	46 (0.9%)	178 (4%)	161 (3%)
Immunological	Leprosy	20018961	246300	4	78 (1.5%)	62 (1.2%)	64 (1.3%)
	Leprosy	20018961	607572	4	272 (5%)	54 (1%)	55 (1%)
Endoorino	Type 2 diabetes	20862305*	125853	9	97 (2%)	718 (14%)	1912 (38%)
Lindocrinic	Type 1 diabetes	19966805*	222100	26	331 (7%)	690 (13%)	191 (3.8%)
Gastrointestinal	Crohns disease	17684544	266600	2	60 (1.2%)	1396 (27%)	3012 (59%)

Т. Н

II4480: BREAST CANCER II3705: BREAST CANCER I GENE; BRCAI

Copy number experiments

 Query disease susceptibility genes in significantly altered copy number

-Q) How a set of significantly altered genes in copy number affects to disease phenotypes?

Table 3. Ranking the target disease phenotypes of the candidate disease genes with copy number changes. This experiment includes 13 human cancer copy number studies from (Beroukhim *et al.*, 2010).

Disago/Trait	Rank by	Rank by	Rank by
Disease/ II alt	rcNet	$\mathbf{rcNet_{corr}}$	$rcNet_{lap}$
Neuroblastoma	5	13	126
Colorectal cancer	14	20	613
Renal cancer	22	14	33
Non small cell lung cancer	34	48	558
Breast cancer	68	136	521
Medulloblastoma	77	826	2007
Prostate cancer	129	127	2447
Ovarian cancer	322	73	1108
Small cell lung cancer	759	53	909
Mesothelioma	959	21	54
Gastrointestinal stromal tumor	1169	787	1679
Hepatocellular carcinoma	4241	952	1295
Glioma	4705	787	951

Gene expression experiments Query differentially expressed genes to predictarget disease phenotype

Table 4. Ranking the target disease of differentially expressed genes. The first column represents the target disease of a microarray gene expression study, and the second column gives the GEO number of the dataset. JAZF1 KLK3 LMTK2

MAGED1 Search gene:

10

Clear

Select a ranking meth

rcNet_lap(Laplacian Sc The number of pheno

About Us | Site Map | Priva

Discoso/Troit	GEO	Rank by	Rank by Rank by	
Disease/ IT all	Num.	rcNet	$\mathbf{rcNet_{corr}}$	$rcNet_{lap}$
AML	GSE9476	576	316	359
	GSE7390	14	49	51
	GSE2034	40	130	146
Breast cancer	GSE6532	129	151	182
	GSE1456	138	102	109
	GSE3494	161	709	1313
Gastric cancer	GSE13911	248	298	362
	GSE10072	206	755	2219
Lung cancer	E-MEXP-231	318	608	1115
	GSE7670	379	1330	4002
Ovarian cancer	GSE6008	414	1494	2283
Desetet	E-MEXP-1327	271	1446	2057
Prostate cancer	GSE8218	900	1214	2498

rcNet web tool

http://compbio.cs.umn.edu/dgsa_rcNet

Computational Biology Lab

Department of Computer Science and Engineering, University of Minnesota - Twin Cities

Introduction | User Guidance | Reference | Credits

rcNet algorithm

dgsa_rcNet(g,
$$\overline{\mathbf{G}}, \overline{\mathbf{P}}, \mathbf{A}, \alpha, \beta)$$

1 $\mathbf{p} = \mathbf{0}$
2 $\tilde{\mathbf{g}} = (\mathbf{1} - \alpha)(\mathbf{I} - \alpha\overline{\mathbf{G}})^{-1}\mathbf{g}$ (equation (3)).
3 $\overline{\mathbf{A}} = (\mathbf{1} - \beta)\mathbf{A}(\mathbf{I} - \beta\overline{\mathbf{P}})^{-1}$
4 $\mathbf{p}^* = (\overline{\mathbf{A}}^T\overline{\mathbf{A}} + \kappa\mathbf{I})^{-1}\overline{\mathbf{A}}^T\widetilde{\mathbf{g}}$
5 $\mathbf{p}(\mathbf{p}^* > \mathbf{a}) = \mathbf{1}$ (target selection with threshold \mathbf{a})
6 return (\mathbf{p})

Fig. 2. rcNet Algorithm - Rank Coherence in Networks.
rcNet algorithm (corr and lap)

```
dgsa_rcNet_enu(g, \bar{G}, \bar{P}, A, \alpha, \beta)
  1 \tilde{\mathbf{g}} = (\mathbf{1} - \alpha)(\mathbf{I} - \alpha \bar{\mathbf{G}})^{-1}\mathbf{g}
  2 p = 0, s = 0
  3 for i = 1 to n
  4 \quad \mathbf{p_i} = \mathbf{1}
  5 \tilde{\mathbf{p}} = (\mathbf{1} - \beta)(\mathbf{I} - \beta \bar{\mathbf{P}})^{-1}\mathbf{p}.
  6 \mathbf{s_i} = \mathbf{corr}(\mathbf{A}\mathbf{\tilde{p}}, \mathbf{\tilde{g}}) \text{ or } - \sum_{\mathbf{i}, \mathbf{j}} \mathbf{A}_{\mathbf{i}, \mathbf{j}} (\mathbf{\tilde{p}_i} - \mathbf{\tilde{g}_j})^2
  7 \mathbf{p_i} = \mathbf{0}
  8 \mathbf{j} = \mathbf{argmax}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}}
  9 p_j = 1
10 return (\mathbf{p})
```

Fig. 3. $rcNet_{corr}$ and $rcNet_{lap}$ Algorithms - Rank Coherence in Networks by Enumeration.

Regularization framework

$$\begin{split} \Omega(f) &= \sum_{i=1}^{k} (f_i^T \Delta^{(i)} f_i + \mu_i \parallel f_i - y_i \parallel^2) \\ & \text{label propagation in the homo-subnetwork} \\ &+ \frac{1}{2} \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \mu_{ij} [f_i^T f_j^T] \Sigma^{(i,j)} \begin{bmatrix} f_i \\ f_j \end{bmatrix}, \\ & \text{label propagation in the hetero-subnetwork} \end{split}$$

- f : predicted label
- y:initial label
- Δ : graph laplacian of homo subnetwork
- k : number of subnetwork
- μ_i and μ_{ij} : positive constants
- Σ : graph laplacian of hetero subnetwork

T. Hwang, and Rui Kuang, "A heterogeneous label propagation for disease gene discovery". SDM 2010

Algorithm

Algorithm 1 MINProp Input k: number of homo-subnetworks σ : convergence threshold $y_1, y_2, ..., y_k$: vectors of initial label values $\alpha_1, \alpha_2, ..., \alpha_k$: diffusion parameters $S^{(1)}, S^{(2)}, ..., S^{(k)}$: homo-subnetwork matrices $S^{(1,2)}, ..., S^{(k-1,k)}$: hetero-subnetwork matrices Output $f_1, f_2, ..., f_k$: vectors of final label values 1: $f_i = 0$ for i = 1...k; 2: **do** 3: $f_i^{old} = f_i \text{ for } i = 1...k;$ 4: **for** i = 1...k $t = 0, f_i^0 = 0;$ $y' = \frac{1 - k\alpha_i}{1 - \alpha_i} y_i + \frac{\alpha_i}{1 - \alpha_i} \sum_{j \neq i} S^{(i,j)} f_j;$ 5: 6: 7: do t = t + 1;8: $f_i^t = (1 - \alpha_i)y' + \alpha_i S^{(i)} f_i^{t-1};$ 9: while $(|| f_i^t - f_i^{t-1} || > \sigma);$ 10: $f_i = f_i^t;$ 11: end for 12: 13: while $(\exists i \text{ s.t. } || f_i - f_i^{old} || > \sigma);$ 14: return $f_1, f_2, ..., f_k$;

T. Hwang, and Rui Kuang, "A heterogeneous label propagation for disease gene discovery". SDM 2010

rcNet algorithm (corr and lap)

```
dgsa_rcNet_enu(g, \bar{G}, \bar{P}, A, \alpha, \beta)
  1 \tilde{\mathbf{g}} = (\mathbf{1} - \alpha)(\mathbf{I} - \alpha \bar{\mathbf{G}})^{-1}\mathbf{g}
  2 p = 0, s = 0
  3 for i = 1 to n
  4 \quad \mathbf{p_i} = \mathbf{1}
  5 \tilde{\mathbf{p}} = (\mathbf{1} - \beta)(\mathbf{I} - \beta \bar{\mathbf{P}})^{-1}\mathbf{p}.
  6 \mathbf{s_i} = \mathbf{corr}(\mathbf{A}\mathbf{\tilde{p}}, \mathbf{\tilde{g}}) \text{ or } - \sum_{\mathbf{i}, \mathbf{j}} \mathbf{A}_{\mathbf{i}, \mathbf{j}} (\mathbf{\tilde{p}_i} - \mathbf{\tilde{g}_j})^2
  7 \mathbf{p_i} = \mathbf{0}
  8 \mathbf{j} = \mathbf{argmax}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}}
  9 p_j = 1
10 return (\mathbf{p})
```

Fig. 3. $rcNet_{corr}$ and $rcNet_{lap}$ Algorithms - Rank Coherence in Networks by Enumeration.