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Network biology methods integrating genomic
data with biological prior knowledge for cancer
genomics

Tae Hyun Hwang, Ph.D.
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University of Minnesota Twin-Cities

&
UNIVERSITY OF MINNESOTA O = — AL AN
Driven to Discover™ %7:” 1T E 2!' —?_-I :" lA: \x—




Motivation

e A catalogue of molecular aberrations that cause cancer is critical for
developing and deploying therapies that will improve patients’ lives
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Motivation

e Integrating data with prior knowledge to build reliable predictive
models for the development of drug targets and efficient therapeutic
strategies is one of key challenges in cancer genomics
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Gene expression biomarker

d Whole-genome analysis b Generate signature of genes that C Apply to independent
correlate with clinical parameter validation cohorts

g

f Clinical implementation € Regulatory approval d Evaluate clinical performance
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Ian J Majewski & René Bernards.,” Taming the dragon: genomic biomarkers to individualize the treatment of cancer”, Nature Medicine 2011



Challenge

* [nconsistent biomarker discovery

 Only three common biomarkers from two breast
cancer studies
70 genes 76 genes

van’t veer et.al, Nature 2002 Wang et. al, Lancet 2005

- high dimensions but low sample size
- different platform (Agilent vs. Affymetrix)

- nhoise and etc.



Network biology methods

* Network-based learning methods

-  Represent data as objects (i.e. patients, genes, or disease) and edges (i.e.,
interactions, co-expressions or associations)

« Capture the dependency (i.e. interactions, co-expression, or co-
occurrences) of genes, SNPs, and Copy Numbers Variations (CNVs)

v Interpretability

- Biologically interpretable
 Data Integration
« Generalizability and scalability

- Efficient optimization



Our approach
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Gene expression

Robust and efficient identification of biomarkers by classifying

features on graphs

TaeHyun Hwang', Hugues Sicotte?, Ze Tian', Baolin Wu3, Jean-Pierre Kocher?,
Dennis A. Wigle*, Vipin Kumar! and Rui Kuang'-*
Department of Computer Science and Engineering, University of Minnesota, Twin Cities, 2Bioinformatics Core, Mayo

Clinic College of Medicine, Rochester, SDivision of Biostatistics, School of Public Health, University of Minnesota,
Twin Cities and “Division of General Thoracic Surgery, Mayo Clinic Cancer Center, Rochester, MN, USA

*Joint work w/ Mayo Clinic and IBM TJ Watson




T. Hwang et. al, Bioinformatics 2008

Network Propagation

v  Use labeled samples to classify unlabeled samples and genes
by exploring bi-cluster structures of the graph

samples |*l:case samples

o] |: control features
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T. Hwang et. al, Bioinformatics 2008

Classification results

Algorithms Rosetta Vijver Wang

Clinical Genes Genes Genes

(A) Classification results on three datasets
Network propagation 0.788 0.740 0.667 0.564

SVM (linear) 0.773 0.730 0.662 0.536
SVM (RBF) 0.783 0.737 0.661 0.568
Naive Bayes 0.795 0.617 0.476 0.554
LDA 0.579 0.740 0.648 0.502

(B) Comparison between network propagation

and the baseline algorithms
NP versus SVM 278/31/191  247/27/226  242/86/172 309/25/166

(linear)

NP versus SVM 248/44/208 214/124/162 254/81/165 1377/130/233
(RBF)

NP versus Naive 144/106/250 393/10/97  466/3/31  261/24/215
Bayes

NP versus LDA 460/8/32 232/36/232  297/61/142 359/15/126

*The classification performance of all methods are evaluated using area under the receiver operating
characteristics (ROC) score.



T. Hwang et. al, Bioinformatics 2008

Reproducible biomarker
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T. Hwang et. al, Bioinformatics 2008

Take home message

 We proposed a novel network-based learning algorithm to classify genes
and patients in the bipartite graph

« Exploring the cluster structure of the bipartite graph (e.g., co-expression)
could help to accurately predict cancer outcome and identify reproducible
biomarker

 The proposed method is general method, and applicable for other genomic
data (e.g., SNPs, copy number variation, and clinical data)

 No improvement has been achieved from simple data integration

*T. Hwang, H. Sicotte, Z. Tian, B. Wu, JP Kocher, D. Wigle, V. Kumar, R. Kuang, “Robust

2888efficient identification of biomarker by classifying features on graph”, Bioinformatics

*T. Hwang, and R. Kuang. “A Comparative study of breast cancer microarray gene
expression profiles using label propagation”, SDM 2008

*T. Hwang, H. Sicotte, JP Kocher, D. Wigle, V. Kumar, R. Kuang, “ldentifying clinical and

%enetic markers of human disease by classifying features on graphs”, Technical Report
MN-CS-07-021 2007

- Chronic Fatigue Syndrome (SNPs, Gene Expression Data)



Biological prior knowledge

* Protein-protein interaction networks can provide

e Modular structures of genes having similar functions, and involved in same
pathways

e Cancer genes tend to interact with each other in protein-protein interaction
networks (PPI)

'
| e

O Proteasome

O Ribosome

® BRCA1 B DNA damage
Estrogen receptor £ Transcriptional
SRC ® MAP3K1 regulators
GRB2 @ SHCH B Signaling networks

lan W Taylor et al., Dynamic modularity in protein interaction networks predicts breast cancer outcome, Nature Biotechnology 2009




Network-based method

e Jwo step approach

. Best available approaches are often two step approaches:
1) Use seed genes from data and identify subnetworks

2) Use classifiers (e.g., SVM) with selected genes (member genes in the
subnetworks) to predict clinical outcomes

Protein—protein interaction network Gene expressmn profiles

(PPI) ] Phenotype 1

|| Phenotype 2 & ; ‘
Samples
s2 s3 s4 s5 s6

Subnetworks maximizing S(M
for each starting node in PPI

\ /Gene expression matrix l

/ Samples \
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\Discriminative potential S(M,) = the Mutual Information or t-score measuring the association between a, and c/

M4

Chuang et al, Molecular System Biology 2007



Network-based method

e Jwo step approach

. Best available approaches are often two step approaches:
1) Use seed genes from data and identify subnetworks

2) Use classifiers (e.g., SVM) with selected genes (member genes in the

subnetworks) to predict clinical outcomes

CR) Cell proliferation and
replication

*subnetworks include
some known oncogenes!

Chuang et al, Molecular System Biology 2007



Network-based method

e Jwo step approach
: More reproducible biomarker & accurate cancer outcome prediction!
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Network-based method

e Jwo step approach

Disadvantage:

- Use heuristic function to identify subnetworks

- Do not utilize interactions between genes when perform classification
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Network-based method

2008 Eighth IEEE International Conference on Data Mining

Learning on Weighted Hypergraphs to Integrate Protein Interactions and Gene
Expressions for Cancer Outcome Prediction

TaeHyun Hwang? Ze Tian; and Rui Kuang' Jean-Pierre Kocher
Department of Computer Science and Engineering Bioinformatics Core
University of Minnesota Twin Cities Mayo Clinic College of Medicine
thwang, tianze, kuang @cs.umn.edu Kocher.JeanPierre @ mayo.edu
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Systems biology

A hypergraph-based learning algorithm for classifying gene

expression and arrayCGH data with prior knowledge
Ze TianT, TaeHyun Hwang' and Rui Kuang*

Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA

Interesting genes? *Joint work with Mayo Clinic
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Hypergraph vs. normal graph

Microarray gene expression data

Sample Disese status | Genel (up) Gene2 (up) | Genel (down) | Gene2 (down)

Patient| Cancer I 0 0 0

Patient2 Cancer I 0 0 0

Patient3 Cancer I I 0 0

Patient4 Normal 0 0 0 I

Patient5 Normal 0 0 0 I

Patienté ? 0 0 0 I

bi-partite graph / \ hypergraph
samples
P! (up)
cne u
genes 5 P b4 @
P2(+1 pl
genel (up)

p3

‘O gene2 (up) VS p2 @ P> @

03 ;
genel (down) R @ Pe @
P> @ gene2 (down)
O

+1: cancer patients
-1: non-cancer patients

gene 2 (down)

gene 2 (up)




T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009

Regularization framework

min O(f,w)=82f.w)+ullf -y I +pW(w)

Learning labels Learning weights of genes

Cost 1: Highly connected samples should have the same label: Cost 3: Genes that interact with each other
should have similar weights:

I w(e) fw W) \°
Q(f’w)_Z;d(e) (m m) S

_IN (e wie) )2

Cost 2: Supervised learning - the prediction should be

consistent with initial labeling Y;(f(u;) — y(ui))2

f(u): Predicted label of sample u
y(u): Initial label of sample u
w(e): Weight of hyperedge e
gene 2: weight = ? d(u): Degree of sample u in hypergraph
d(e): Degree of hyperedge e in
hypergraph
u,vee: Vertexu and v are connected by
hyperedge e
o(e): Degree of hyperedge e in protein-
protein interaction network
Interaction between hyperedge ¢;
and ¢

gene 3: weight = ?

constraint

protein-protein interaction Oy

Cost | and 2 Cost 3



Working example

e Q: Classify patient 6, and identify biomarkers (two step iterative method)

hypergraph

gene | (up) :w =1 gene2(down) :w = | protein interaction network

\ ' ' ene 3 (up):w = |
.’pl@ p4(Cy) | sene 3 (up)

PS@
.p3@ | P6®

gene 2 (up):w = |

*Gene 3 is not differentially expressed
but gene 3 play an important role in PPI



Working example

e Q: Classify patient 6, and identify biomarkers (two step iterative method)
1. Sample classification: (initial weights of genes are uniform)
a) Highly connected samples should have same label

b) The prediction should be consistent with initial labeling

hypergraph

gene | (up) :w =1 gene2(down) :w = | protein interaction network

/i ‘ P.4 '- gene 3 (up):w = |
. s
P2

'P3 . p6

gene 2 (up):w = |




Working example

e Q: Classify patient 6, and identify biomarkers (two step iterative method)

1. Sample classification
2. Learning weights of hyperedges

a) Fix current label information, and learn weights of hyperedges

hypergraph

gene | (up) :w =1 gene2(down) :w = | protein interaction network

.'P|‘ P.4 '- gene 3 (up):w = |
. P5
P2

'P3 . p6

gene 2 (up):w = |



Working example

Q: Classify patient 6, and identify biomarkers (two step iterative method)

Sample classification
Learning weights of hyperedges
a) Fix current label information, and learn weights of hyperedges
b) Genes that interact with each other in should have similar weights
hypergraph
gene | (up) :w=2.0  gene2 (down):w =17 protein interaction network

.'P|‘ P4 " gene 3 (up):w = 0.2
. s
P2

'P3 . p6

gene 2 (up):w = 1.5 The weight of gene 3 is smaller than those of other genes




Working example

Q: Classify patient 6, and identify biomarkers (two step iterative method)

Sample classification
Learning weights of hyperedges
a) Fix current label information, and learn weights of hyperedges
b) Genes that interact with each other in should have similar weights
hypergraph
gene | (up):w =15 gene2 (down):w =13 protein interaction network

/i ‘ P'4 " gene 3 (up):w = 1.2
. P5
P2

'P3 . p6

gene 2 (up):w = 1.2 By exploring the modular structure, our method assigns
higher weights to gene 3



Working example

Q: Classify patient 6, and identify biomarkers (two step iterative method)

Sample classification
Learning weights of hyperedges

Repeat step 1 and 2 until stopping criteria satisfies

hypergraph

gene | (up) :w =15 gene2 (down):w =13 protein interaction network

/i ‘ P4 '- gene 3 (up):w = 1.2
. P5
P2

'P3 . p6

gene 2 (up):w = 1.2
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Working example

Q: Classify patient 6, and identify biomarkers.

Sample classification
Learning weights of hyperedges
Repeat step 1 and 2 until stopping criteria satisfies
Rank hyperedges based on their weights: Highly ranked hyperedges can
be potential biomarkers
hypergraph
gene | (up) :w =16 gene2 (down):w = |.4 protein interaction network

/i ‘ P4 '- gene 3 (up):w = 1.3
. P5
P2

'P3 | P6

gene 2 (up):w = 1.3



T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009

Experiments 1

e Baselines

«  Support Vector Machines (SVMs)
with linear and RBF kernels

 Rapaport et al, BMC bioinformatics
2007

 Liand Li, Bioinformatics 2008
 Hypergraph
 HyperPrior-LP
 HyperPrior-NB

Task

Cancer outcome prediction +
Biomarker identification

Dataset (Gene expression)

Two groups (metastasis vs non-
metastasis)

1. van’t Veer et al, Nature 2002
« /8 samples + 19 samples

2. van de Vijver et al, New Engl. J.
Med 2002

« 295 samples (5 folds cross
validation)

3. Protein interaction networks

*The classification performance of all methods are evaluated using area under the receiver operating

characteristics (ROC) score.




T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009

Classification results

van 't Veer et al. van de Vijver et al.

Algorithms 231 genes 326 genes 1464 genes
SVM (linear) 0.857 0.676 0.671
SVM (RBF) 0.857 0.681 0.667
Rapaport et al. 0.869 0.682 0.665
Li and Li 0.833 0.695 0.657

On the van ’t Veer et al. dataset, the AUC on the 19-patient test set 1s reported. On the
van de Vijver et al. dataset, over the random 5-fold cross-validations (50 times on both
the 326 genes and the 1464 genes), the mean AUCs are reported.

*231 genes reported in van't Veer et al. are used.
*326 and 1,464 cancer related genes collected from Ingenuity and Memorial Sloan
Kettering Cancer Gene lists are used in the second experiments




T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009

Subnetwork identification

e Data integration can help to identify breast cancer-
related subnetworks

SRC :
a2
TP53 subnetwork  STAT | subnetwork BRCﬁissubnetwork
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Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009

Biomarker discovery

Known Gene Ranking
Disease HyperGene  HyperGene CC
Gene a=05, p=1  «a=0.5, p=0.001

TGFB1 130 152 760
CASPS 142 201 1221
PTEN 157 198 725
PPMI1D 182 60 266
KRAS 183 257 1267
SERPINEI 207 118 973
BRCA2 227 299 924
PIK3CA 415 363 712
STKI11 632 609 773

The ranking of known breast cancer (OMIM#114480)
susceptibility genes



T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009

Experiments 2

e Baselines

e Support Vector Machines (SVMs)
with linear and RBF kernels

e L:-Support Vector Machines
(SVMs)

e Rapaport et al, bioinformatics
2008 (Fused-SVM)

e Hypergraph
e HyperPrior-LP
e HyperPrior-NB

e Task

Cancer outcome prediction +
Biomarker identification

Dataset (Copy number)

Two groups (by grade, stage, and
metastasis)

1. bladder tumor
e 12 gradel vs 45 grade 2&3
e 16 stage T1vs 32 stage T2+
2. melanoma tumor

e 35 metastasis vs 43 no-
metastasis

*The classification performance of all methods are evaluated using area under the receiver operating

characteristics (ROC) score.
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Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009

Classification results

Table 1. Classification performance on arrayCGH data

LOO errors SVM (linear) SVM (RBF) Li-SVM Fused SVM Hypergraph HyperPrior-LP HyperPrior-NB
Bladder tumors (by grade) 9 9 12 7 11 6 6
Bladder tumors (by stage) 9 9 13 7 9 5 6
Melanoma tumors 10 10 8 7 7 7 7

This table shows the number of misclassified samples in the LOO cross-validation on the bladder cancer dataset with two different labeling schemes (by tumor grade or by cancer
stage) and the melanoma cancer dataset.

Our methods achieved overall best performances!
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Our methods found cancer-related copy number regions!




T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009

Take home message

 Qur proposed method that integrates genomic data with biological
prior knowledge can help to improve cancer outcome prediction and
discover cancer-related subnetworks in breast cancer

« Qur proposed method also found cancer-related copy number
variations with aCGH data experiments in melanoma and bladder
cancer

* One should be careful to interpret results from network-based
methods

*T. Hwang*, Z. Tian*, JP Kocher, R. Kuang, “Learning on Weighted Hypergraphs for
Integrating Protein Interactions and Gene Expressions”, IEEE International Conference on
Data Mining, ICDM 2008

/. Tian*, T. Hwang*, and R. Kuang. “A Hypergraph-based Learning Algorithm for Classifying
Gene Expression and arrayCGH data with Prior Knowledge”, Bioinformatics 2009

/. Tian*, T. Hwang*, and R. Kuang. “A Hypergraph-based Learning Algorithm for Classifying
arrayCGH data with Spatial Prior Knowledge”, Proc. of IEEE International Workshop on
Genomic Signaling Processing and Statistics, GENSIPS 2009

*Joint first author



Network/pathway based methods for patient
stratification



Motivation

e Somatic mutation, and copy number alternations (CNAs) at the
distinct loci of the human genome may contribute to the development
of cancers

e The systematic characterization of disrupted pathways by genomic
alterations in human cancer can help to establish the refined genetic
landscape of cancer
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PARADIGM

e Given: genomic data (e.g., mutation, copy humber, gene
expression and etc), and pathway
e Task: Identify pathway activity of patient

e Input: genomic data and pathway

e Output: pathway activity (e.g., active or inactive)

Regulation from Other Genes, Small Molecules, Complexes

V= ¢\J/¢\:» o e o

Direct Functional Activity
of Gene on Other Genes
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PARADIGM

e Pathway activities could be used to identify patient subgroups
having different survival outcome
e Pathway activities could guide a clinical decision for efficient

t
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PARADIGM

e Pathway activities could be used to identify patient subgroups
having different survival outcome

e Pathway activities could guide a clinical decision for efficient
therapy

Limitation
- rely on existing pathway database
- current knowledge of pathway is still incomplete (~4000 genes
annotated with current existing pathway database)
- need to use independent algorithms to cluster patient samples
- step 1) identify pathway activities
- step 2) use pathway activities to discover patient subgroups




HotNet

e Given: genomic data (e.g., mutation, or copy number), and
protein-protein interaction networks
e Task: Identify significantly mutated subnetworks

e Input: genomic data and protein interaction networks

e Output: subnetwork
Given:

1. Network G =(V, E)
V = genes. E = interactions b/w genes

2. Binary mutation matrix Genes

—

- N

Find: Connected subnetworks mutated in a
significant number of patients
— mutated in patient if > 1 gene mutated in patient

slide courtesy of Dr. Ben Raphael

. = mutated
= not mutated

Patients




HotNet

e Workflow

Mutation Matrix Human Interaction Network
G
e * = mutated genes

-

F
-

Mutation = heat diffusion Extract “significantly hot” subnetworks
Hot ‘ ) ‘D\
. (2)
—> ¢
Cold

Patients

(1)

O

MD

*F. Vandin, E. Upfal, and B. J. Raphael. J. Comp.Biol. (2011). Also RECOMB (2010).
slide courtesy of Dr. Ben Raphael




HotNet

e Results
Ovarian Subnet k
ARTICLE d61:10.1038/nature10165 B . NOTCH S|g na"ng percent of cases (%)
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Integrated genomic analyses of ovarian ° inactivated activated
carcinoma
The Cancer Genome Atlas Research Network® MAML 1 J_
o . | 2% | inhibition
N e '. . i Jgf" | amplified / mutated
e ® @ ; 0
*de * 0 e e e amplified / mutated NOTCH3 _ | _MAML2
o o o [ 12% ] 5% | i
- e® o %o JAG2 amplified / mutated | @mPplified / mutated activation
o' L 3% | | MAML3
. amplified | | ‘ 2% |
Proliferation mutated

nnnnnn

Kegg Pathway
Notch signaling (p < 6x107)

nnnnn

12/27 subnetworks significantly overlap known ¢
pathways (KEGG) or protein complexes (PINdb) *©

TCGA. Nature (2011)

slide courtesy of Dr. Ben Raphael
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e Results
Ovarian Subnetworks

ARTICLE do1:10:1038/natue10168 B NOTCH Slgnallng m percenrgfcases (%)

Integrated genomic analyses of ovarian 23% of cases altered inactivated activated

carcinoma

e Cancr Genome s Research Necworc EE J_

. e & ® - | 20, | inhibition

Limitation

- assume that gene-gene interaction networks are sparse

- could not be applicable large functional linkage network
— could not incorporate existing biological prior knowledge
- no data mtegratlon W|th pathway or other blologlcal knowledge

o ." ,' B -

sssss

Kegg Pathway
Notch signaling (p < 6x107)

12/27 subnetworks significantly overlap known ¢
pathways (KEGG) or protein complexes (PINdb) *©

TCGA. Nature (2011)

slide courtesy of Dr. Ben Raphael



MEMo

e Workflow

Mutual Exclusivity Modules (MEMo) in Cancer

Y o -

Identify Subnetworks that are:

|. Recurrently altered
2. Likely to belong to the same pathway
3. Contain individual genetic components that

exhibit a tendency towards mutual exclusivity

iy

Step I: Build Binary Event Matrix of Significantly Altered Genes

* Filter I: Significantly Mutated Genes (SMG) Cases

» Filter 2: Recurrently Altered Copy Number E ..']‘.= .i:.=
Regions of Interest (ROI) ¢ ENCCEENCNE
e Filter 3: Concordant mRNA Expression = :l:“., " _.='i=
B Alcered
[0 Mot Altered

Step 2: Identify All Gene Pairs Likely to be Involved in the Same Pathway

Region of Recurrent Amplification

&) (B (G5 e
S T B and G are “proximal

« in the network and likely
to be involved in the same

functional process.

o B B (8D (HD A

Human Reference Network
(HRN) derved from
pathway and interaction
databases.

Region of Recurrent Deletion

Figure 1.

Step 3: Build Network of Gene Pairs and Extract Cliques

Step 4: Assess Each Clique for Mutual Exclusivity

Significant
departure from

o 7 Do we observe mutual random expectation.
B exclusivity of genetic events
\ I across all patients?
G Al
GEHE B IIIllIltliiliilllllltliilillIllllllitll!llil
Gene G e

|dentifying mutual exclusivity modules (MEMo) in cancer. Overview of the algorithm.

Ciriello et. al., “Mutual exclusivity analysis identifies oncogenic network modules”, Genome research 2012




e Results

MEMo

EGFR A% SRR R LTI R e e e e e i pmens Activates AKT
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PIK3R1 9% u =mm (T smmmEs (Proliferation,
\PDGFRA 10% | 1] i 1l | i Survival, Translation) Y,

. Somati . . — i
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Mutation —— Inhibits
a) Rb Signalling CD&’VDZA Altered Cases: 68% CDKN2B Altered Cases: 74% A
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O p* < 1E-2 p*<1E-2
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\RBT 10% | | (ELETTITTITT G1/S progression /
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p=2E-4 p = 5E-4 CDKN2A
O p* < 1E-2 O p* < 1E-2
MDM2 MDM4 MDM2
0 Q
TP53 TP53
P53
Altered Cases: 77% p<1E-4
COKNZA — 45% LLEEEELEEERE e e e e e e e e e e e e e e jmnn
[0)
vou2 1;;):||||-|” ||||||||||“. Apoptosis
(4]
K TP53 32% EEEEEEEEER [ 1] ] IIlllllllllllllllllllllllllllll Senescence /
(C) RTKIRAS/PI(3)K EGFR EGER N\
Signalling Altered Cases: 74% Cases Altered: 74%
p =0.003 p = 0.0039
O 0% = 0.01 O 0% = 001 EGFR PDGFRA
PDGFRA PIK3R1
O O ot (o) e e
PTEN PTEN
Altered Cases: 80% p =0.0018

Figure 2. Top-scoring modules in the TCGA GBM data set. The top-scoring mutually exclusive modules correspond closely to core signaling pathways
including Rb signaling (A), p53 signaling (B), and RTK/RAS/PI(3)K signaling (C).

Ciriello et. al., “Mutual exclusivity analysis identifies oncogenic network modules”, Genome research 2012




GBM (338 samples)

MEMo

Colon and Rectum Adenocarcinoma

(151 samples)
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a (o1 IS s |
| | | + ' ERBB2
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| 1
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Akt 84% 49%
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slide courtesy of Dr. Giovanni Ciriello
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GBM (338 samples)
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GBM (338 samples)

ERBB2
EGFR
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Limitation

Colon and Rectum Adenocarcinoma

IGF2
ERBEBZ2
PIK3CA
PTEN

(151 samples)

-__.J

- assume that gene-gene interaction networks are sparse

- could not be applicable

- rely on existing pathway database
- could not find novel pathway
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AKT1
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_
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Samples:
67%
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slide courtesy of Dr. Giovanni Ciriello




Patient stratification using genomic and pathway

data integration

biological prior knowledge
Input

Biological prior knowledge
(e.g, pathway, literature,
and etc)

TRANSCRIPTION

Gene-gene interaction
(e.g., physical,coexpression
genetic and etc.)

Develop novel computational methods to integrate genomic data with

Output

Genomic data (e.g.,
gene expression, cCopy
number, mutation,
methylation and etc.

7
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SJ Kim, T. Hwang, G.B. Giannakis, CIP 2012
T. Hwang and et. al., Nucleic Acids Researgh 2012

atrix tri-factorization

e Given: Gene expression and pathway data
e Task : Identify patient subgroups and pathway activities related

with patient subgroups

Patients
(0 0] (@)} AN N

—
o

Genes Patient subgroup

group

Patients

Patient
N

10 15

X ~

Gene

Gene expression Patient subgroup Patient subgroup-pathway Pathway

min
F, S

1
11X — FSGT|[3. + Ap[[F|3

+XsIS]I3

association

X: gene expression data

F: patient subgroups

S: patient subgroup-pathway association
G: pathway
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T. Hwang and et. al., Nucleic Aci Ss(eaﬁhé?’ | men t S (TC G A)

e TCGA Ovarian Carcinoma: 377 patients with clinical data
e Gene Expression: 11,864 mRNA expression
e Pathway: KEGG pathway (186 pathways)

—_i

— Group A
0.9 —— Group B
—  Group C
0.8+
0.7 Ranking Pathway (Microarray gene expression)
T 1 KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION
H 0.67 2 KEGG COMPLEMENT AND COAGULATION CASCADES
£ 0.5 3 KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION
S pval < 0.00690 4 KEGG CELL ADHESION MOLECULES CAMS
; 0.4 5 KEGG PATHWAYS IN CANCER
@ 0.3l 6 KEGG PURINE METABOLISM
7 KEGG CHEMOKINE SIGNALING PATHWAY
0.2 8 KEGG HEMATOPOIETIC CELL LINEAGE
0.1 9 KEGG MAPK SIGNALING PATHWAY
10 KEGG TGF BETA SIGNALING PATHWAY

0 20 40 60 80 100
Time (months)

(a) microarray gene expression

v Matrix tri-factorization can accurately identify patient subgroups having
different survival outcome and pathways associated with patient subgroups
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T. Hwang and et. al., Nucleic Aci esearch 2012 «

xperiments (TCGA)

e TCGA Ovarian Carcinoma: 377 patients with clinical data
e Copy Number Alteration: 11,864 copy number changes
e Pathway: KEGG pathway (186 pathways)

—— Group A
—— Group B
—  Group C

o
»
.

pval < 0.01670

Survival (fraction)
o o
N

Pahtway (Copy number alteration)

KEGG PATHWAYS IN CANCER

KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION

KEGG RIBOSOME

KEGG CELL ADHESION MOLECULES CAMS

KEGG UBIQUITIN MEDIATED PROTEOLYSIS

KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION

KEGG MAPK SIGNALING PATHWAY

KEGG WNT SIGNALING PATHWAY

KEGG HUNTINGTONS DISEASE

0 20 40 60 80 100 120
Time (months)

(B) Copy Number Alteration

KEGG CHEMOKINE SIGNALING PATHWAY

v Matrix tri-factorization can accurately identify patient subgroups having
different survival outcome and pathways associated with patient subgroups




Patient stratification using genomic and pathway
data integration using animal model

e Develop novel computational methods to integrate cross-species

genomic data for translational research

Input

Biological prior knowledge
(e.g, pathway, literature,
and etc)

TRANSCRIPTION

Genomic data (e.g., gene
expression, copy number,
mutation, methylation and etc.

\-\:;/‘,—}

e L
SN
\.
Y

Output

Gene-gene interaction
(e.g., physical,coexpression
genetic and etc.)
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Cross-species Matrix tri-factorization

e Given: Dog and human gene expression, pathway data, and dog sugbgroup
e Task : Identify patient subgroups and pathway activities related with patient subgroups

in human
Genes Dog subgroup 05 Pathwa Gene
(N
> 14
<15
o ?
g 2 -
‘5 2.5
(¢
o 3
3.5
1 2 3 4 | 5 10 I5
Fdog X Sdog
0.5
2 2 =381 |
(7] v O
54 %4 Sl
b= E= ? 2 2 ?
0_6 ('36 n o —
o ‘525
8 8 O(E 3
10 10 3.5
5 10 y 1 2 3 1 2 3 4 | 5 10 15
Xhuman ~ F human X human X

min (HXdOQ — FdongogGT"%’+ HXhuman — FhumansdogGT|‘%)

Fhuman, Sdog

1
2
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Cross-species Matrix tri-factorization

e Given: Dog and human gene expression, pathway data, and dog sugbgroup
e Task : Identify patient subgroups and pathway activities related with patient subgroups

in human

Genes Dog subgroup Gene

group

Patient
N

Use inferred pathway activities from dog to
human cancer

0.5
2 2 g_
(7] (7, O
)
C4 %4 So'-
B 'S 7 b=
0‘36 <6 . o
a 2,
8 8 &
10
10 3.
2 3
5 10 1t 1 2 3
—~ s
Xhuman ~ F human X dog

min (HXdOQ — FdongogGT"%’+ HXhuman — FhumansdogGTH%)

Fhuman, Sdog

DO | —
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Experiments (Osteosarcoma)

e Osteosarcoma: 34 dogs (GSE27217) and 34 patients (GSE16091) with

clinical data

e Pathway: Reactome pathway (430 pathways)
e 5 (short) vs 12 (long) months for dog subgroup

Kaplan—Meier estimate of survival functions

Ranking

Pathway

= Group 1
== Group 2

INFLUENZA LIFE CYCLE

CELL CYCLE CHECKPOINTS

o
-]

p-value < 0.01827
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(=) (=
= (o))

o
)
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Take home message

* |Integrating genomic data with pathway database can help to improve
an ability for patient stratification and pathway discovery

 Leveraging knowledge (i.e., pathway activities) from dog cancer can
help to study human cancer

 Our proposed method is a general method, and applicable to other
problems

- Inner-species analysis: infer pathway activities from one data, and
use them to study another data

- Tissue or cancer type specific dysregulated pathway activity
analysis

*SJ Kim, T. Hwang*, Georgios B. Giannakis, “Sparse Robust Matrix Tri-factorization with
Application to Cancer Genomics”, International Workshop on Cognitive Information
Processing, CIP 2012

*T. Hwang, Maogiang Xie, Gowtham Atluri, Sanjoy Dey, Vipin Kumar, Changjin Hong and Rui
Kuang. “Co-clustering Phenome-genome for Phenotype Classification and Disease Gene
Discovery”, Nucleic Acids Research 2012



Large-scale network-based integrative analysis identifies
common pathways disrupted by copy number alterations
across cancers

TaeHyun Hwang™!, Gowtham Atluri?, Rui Kuang?, Vipin Kumar? Timothy
Starr!, Peter M Haverty3, Zemin Zhang3, Jinfeng Liut3

'"Masonic Cancer Center, ?Department of Computer Science and Engineering, University of
Minnesota - Twin Cities; Department of Bioinformatics and Computational Biology, Genentech
Inc.

*Joint work with Genentech
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1. Comprehensive pathway activity map across 16 types of cancers
2. Common and cancer-type specific disrupted pathway

3. Network view how copy number alterations can affect pathway
4. Pathway signatures to identify patient subgroups
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Overview
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Experiments

e Data

e 2172 patients from 16 different types of cancers using
Affymetrix 250k sty SNPs array data [Beroukhim et al.,
Nature 2010]

— Use pennCNV to measure CNA, and use GLAD to
segmentation

— Use GISTIC to find significantly altered copy number
region

e Human protein-protein interaction network from HPRD
database (May 2010)

— 9674 proteins and 34,998 protein interactions
e Pathway database

— KEGG, Biocarta, and Reactome from MSigD, and
conserved subnetworks cross species
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Pathway activity view of cancers
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TGF-beta signaling pathway
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Commonly disrupted pathways across cancers
correlate with clinical outcomes

Group A vs C
p-value < 0.0000198

Hazard ratio = 1.4910
20 40 60
Time (months)

Commonly disrupted pathways may allow stratification of
cancers at the pathway level, which could lead to the
development of more targeted therapeutic!

Shedden K, Taylor JMG, Enkemann SA, Tsao MS, Yeatman TJ, et al. (2008) Gene expression-based survival prediction in
lung adenocarcinoma: a multi-site, blinded validation study. Nature medicine 14: 822-827
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Commonly disrupted pathways across cancers
correlate with clinical outcomes
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Motivation

e Reactivation of the androgen receptor (AR) during androgen depletion
therapy (ADT) underlies castration-resistant prostate cancer (CRPCa).

e Alternative splicing of the AR gene and truncated AR variants lacking the
AR ligand binding domain has emerged as an important mechanism of
ADT-resistance in CRPCa.

e Truncated AR variants proteins were originally discovered and
functionally characterized in the CRPCa 22Rv1l and CWR-R1 cell lines, and
the LuCaP 86.2 PCa xenograft

eln a previous study, we demonstrated that altered AR splicing in CRPCa
22Rv1 cells was linked to a 35 kb intragenic tandem duplication of AR exon
3 and flanking sequences

v In this study, we wanted to investigate the link between AR gene
structure alterations and enhanced synthesis of truncated AR
variants in CRPCa CWR-R1 cell lines using paired-end sequencing data
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Data preparation

« 2x76bp paired-end sequencing data using GAIIX illumina with SureSelect

= 2X50bp paired-end Seq USing Hiseq GENOMIC SAMPLE

SureSelect™
- 2x/6bp paired-end seq using Matepair DNA Capture Microarray
500000000000C rocess

- 2x150bp paired-end seq using MiSeq L .
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Structural Variation Call w/ Hydra

A
chr9: 9,269 bp
o = - . T2 =1 ==t ] ——amy —
=F = '-..'_'_--—'E'-g_.:%-—hl I | 1 = -':'_' etk =
Concordant matepairs _— i | == i
— = — 11 I | [ o == s —
= | ——— [ [ | [ | —.  ——— ——
eV = | L R, .
— 11 1 | | | e
Discordant matepairs it i L=
(deleion F/R) 11— — =
---J.=:| T T _=I l-.Il--l
{in?emiﬂn F:‘IF] -=|] 1 1 I-_ : : :
X = 1 Discordant cluster
(inversion R/R) = i ,’
] N .'
11 | | |
11 1 | |
Hydra SV calls o T b
X |- *

Aaron et al, Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome, Genome biology 2010
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Our pipeline
CRW-R1

| raw sequences from illumina ¢ paired-end reads

¥ (N = 11,267,612)
2. Filter raw sequences (Remove poor quality reads) (N = 8,105,919)
\/
3. Convert raw sequences (gqseq format) to fastq data
\/
4. Run fastq quality control (fastQC)
\J
Hydra pipeline 5. Allgn filtered pairs with BWA Concordant w/
(N = 7,793,299) | —> hgl9
/7,480,686
6. Collect discordant or unaligned paired reads by BWA (N =312,613)
\/
/.Re-align discordant or unaligned paired reads by BWA with Novoalign
Concordant w/
 / »  hgl9
8. Collect discordant or unaligned paired reads by Novoalign 47,472
(N = 265,141) Concordant w/
v > hgl9
9. Re-align discordant or unaligned paired reads by Novoalign 785
v 264,356
|0. Identify Structural Variation (SV) from discordant paired reads using Hydra —> Disco’rdant
% pairs yielding

Screen SV calls => 36 final SV calls

566 discordant
mappings
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Structural Variation Discovery Visualization
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. CWR-R1 deletion
1 ARXq11-12 o 2 2b 3CE1-3 coding
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v Hydra discovered ~48 kb deletion in AR intron 1 in CWR-
R1 cell line
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Validation

a 1 predicted CWR-R1 4:1»3~I1=,-tin::-n2 b 3CE1-3 4 _5-8 )
[ AR Xq11-12 /—\. || | | H 1111 | coding
: ' ” . _{ |11} utr
Fos 1 111 ,
F1% “&8 I
C fusion
66,813,089/66,861,565

s
|
|

AAGCCCATATGATCTTTTCCGAAACAGACCCTTATC TACCTCCTTCTTTGGAGTCTTTCTCCTACTT 5' breakpoin
I T O A T O N I 1 | |
AAGCCCATATGATCTTTTCCGAAACAGACCCTTATC TTGTACTTGGGBCTTGMTMGGCTGATAT fusion

TGGGTTTGCAAATCAGTAGAATTTTTTATTGCTTITCTGTTGTACTTGGGACTTGAATAAAGGCTGATAT 3' breakpoin

FIGURE 5
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Validation
d
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Take home message

Design experiments with both biologists and computational biologists from
the beginning (should know which tools will be used)

-  CREST (longer sequences) vs Hydra (more depth coverage)
- GAIIX, HiSeq, MiSeq, or Mate-pair (sequence length, insertion size)
- Depth coverage (10X, 100X, or 1500X)

« Start with a small number of genes with higher depth coverage (due to the
heterogeneity of cell population)

« Should understand existing tools (e.g., how it works, and what are
limitations)

*Yingming Li*, TaeHyun Hwang*, LeAnn Oseth, Betsy Hirsch, Robert Vessella, Kenny
Beckman, Kevin Silverstein, and Scott Dehm, “AR intragenic deletions linked to androgen
receptor splice variant expression and activity in models of prostate cancer progression”,
Oncogene 2012

*Joint first author
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