SH3BP4 function prediction

GO:0032007 negative regulation of TOR signaling cascade

Discovery of SH3BP4 as a potential candidate of tumor suppressor that functions in the Rag GTPasemTORC1 signaling [*Molecular Cell 2012*]

Network biology methods integrating genomic data with biological prior knowledge for cancer genomics

Tae Hyun Hwang, Ph.D. Biostatistics and Bioinformatics, Masonic Cancer Center University of Minnesota Twin-Cities

Motivation

• A catalogue of molecular aberrations that cause cancer is critical for developing and deploying therapies that will improve patients' lives

Motivation

• Integrating data with prior knowledge to build reliable predictive models for the development of drug targets and efficient therapeutic strategies is one of key challenges in cancer genomics

Challenge

- Inconsistent biomarker discovery
 - Only three common biomarkers from two breast cancer studies

van't veer et.al, Nature 2002 Wang et. al, Lancet 2005

- high dimensions but low sample size
- different platform (Agilent vs. Affymetrix)
- noise and etc.

Network biology methods

- Network-based learning methods
 - Represent data as objects (i.e. patients, genes, or disease) and edges (i.e., interactions, co-expressions or associations)
 - Capture the dependency (i.e. interactions, co-expression, or cooccurrences) of genes, SNPs, and Copy Numbers Variations (CNVs)
 - ✓ Interpretability
 - Biologically interpretable
 - Data Integration
 - Generalizability and scalability
 - Efficient optimization

Our approach

BIOINFORMATICS ORIGINAL PAPER

Vol. 24 no. 18 2008, pages 2023–2029 doi:10.1093/bioinformatics/btn383

Gene expression

Robust and efficient identification of biomarkers by classifying features on graphs

TaeHyun Hwang¹, Hugues Sicotte², Ze Tian¹, Baolin Wu³, Jean-Pierre Kocher², Dennis A. Wigle⁴, Vipin Kumar¹ and Rui Kuang^{1,*}

¹Department of Computer Science and Engineering, University of Minnesota, Twin Cities, ²Bioinformatics Core, Mayo Clinic College of Medicine, Rochester, ³Division of Biostatistics, School of Public Health, University of Minnesota, Twin Cities and ⁴Division of General Thoracic Surgery, Mayo Clinic Cancer Center, Rochester, MN, USA

*Joint work w/ Mayo Clinic and IBM TJ Watson

Network Propagation

✓ Use labeled samples to classify unlabeled samples and genes by exploring bi-cluster structures of the graph

Classification results

Algorithms	Rosetta		Vijver	Wang			
	Clinical	Genes	Genes	Genes			
(A) Classification resu	ults on three d	atasets					
Network propagation	0.788	0.740	0.667	0.564			
SVM (linear)	0.773	0.730	0.662	0.536			
SVM (RBF)	0.783	0.737	0.661	0.568			
Naïve Bayes	0.795	0.617	0.476	0.554			
LDA	0.579	0.740	0.648	0.502			
(B) Comparison between network propagation and the baseline algorithms							
NP versus SVM (linear)	278/31/191	247/27/226	242/86/172	309/25/166			
NP versus SVM (RBF)	248/44/208	214/124/162	254/81/165	137/130/233			
NP versus Naïve Bayes	144/106/250	393/10/97	466/3/31	261/24/215			
NP versus LDA	460/8/32	232/36/232	297/61/142	359/15/126			

*The classification performance of all methods are evaluated using area under the receiver operating characteristics (ROC) score.

Reproducible biomarker

Take home message

- We proposed a novel network-based learning algorithm to classify genes and patients in the bipartite graph
- Exploring the cluster structure of the bipartite graph (e.g., co-expression) could help to accurately predict cancer outcome and identify reproducible biomarker
- The proposed method is general method, and applicable for other genomic data (e.g., SNPs, copy number variation, and clinical data)
- No improvement has been achieved from simple data integration

•**T. Hwang**, H. Sicotte, Z. Tian, B. Wu, JP Kocher, D. Wigle, V. Kumar, R. Kuang, "Robust and efficient identification of biomarker by classifying features on graph", **Bioinformatics** 2008

•**T. Hwang**, and R. Kuang. "A Comparative study of breast cancer microarray gene expression profiles using label propagation", **SDM** 2008

 T. Hwang, H. Sicotte, JP Kocher, D. Wigle, V. Kumar, R. Kuang, "Identifying clinical and genetic markers of human disease by classifying features on graphs", Technical Report UMN-CS-07-021 2007
 Chronic Fatigue Syndrome (SNPs, Gene Expression Data)

Biological prior knowledge

- Protein-protein interaction networks can provide
 - Modular structures of genes having similar functions, and involved in same pathways
 - Cancer genes tend to interact with each other in protein-protein interaction networks (PPI)

Ian W Taylor et al., Dynamic modularity in protein interaction networks predicts breast cancer outcome, Nature Biotechnology 2009

- Two step approach
 - : Best available approaches are often two step approaches:
 - 1) Use seed genes from data and identify subnetworks

2) Use classifiers (e.g., SVM) with selected genes (member genes in the subnetworks) to predict clinical outcomes

- Two step approach
 - : Best available approaches are often two step approaches:
 - 1) Use seed genes from data and identify subnetworks

2) Use classifiers (e.g., SVM) with selected genes (member genes in the subnetworks) to predict clinical outcomes

Chuang et al, Molecular System Biology 2007

• Two step approach

: More reproducible biomarker & accurate cancer outcome prediction!

Chuang et al, Molecular System Biology 2007

• Two step approach

Disadvantage:

- Use heuristic function to identify subnetworks
- Do not utilize interactions between genes when perform classification

Chuang et al, Molecular System Biology 2007

2008 Eighth IEEE International Conference on Data Mining

Learning on Weighted Hypergraphs to Integrate Protein Interactions and Gene Expressions for Cancer Outcome Prediction

TaeHyun Hwang, Ze Tian, and Rui Kuang[†] Department of Computer Science and Engineering University of Minnesota Twin Cities thwang, tianze, kuang@cs.umn.edu Jean-Pierre Kocher Bioinformatics Core Mayo Clinic College of Medicine Kocher.JeanPierre@mayo.edu

BIOINFORMATICS ORIGINAL PAPER

Vol. 25 no. 21 2009, pages 2831–2838 doi:10.1093/bioinformatics/btp467

Systems biology

A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge

Ze Tian[†], TaeHyun Hwang[†] and Rui Kuang^{*}

Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA

Gene expression/Copy Number

protein-protein interaction networks

*Joint work with Mayo Clinic

- Subnetwork marker
 - Cancer outcome prediction

Hypergraph vs. normal graph

VS

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Sample	Disese status	Genel (up)	Gene2 (up)	Genel (down)	Gene2 (down)	
Patient I	Cancer	I	0	0	0	
Patient2	Cancer	I	0	0	0	
Patient3	Cancer	I	I	0	0	
Patient4	Normal	0	0	0	I	
Patient5 Normal		0	0	0	I	
Patient6	?	0	0	0	I	

Microarray gene expression data

bi-partite graph

•

T. Hwang et. al, **ICDM** 2008 Z. Tian, **T. Hwang**, R. Kuang, **Bioinformatics** 2009

Regularization framework

$$\min_{f,w} \Phi(f,w) = \Omega(f,w) + \mu \| f - y \|^2 + \rho \Psi(w)$$
Learning labels Learning weights of genes

• Q: Classify patient 6, and identify biomarkers (two step iterative method)

- Q: Classify patient 6, and identify biomarkers (two step iterative method)
- 1. Sample classification: (initial weights of genes are uniform)
 - a) Highly connected samples should have same label
 - b) The prediction should be consistent with initial labeling

- Q: Classify patient 6, and identify biomarkers (two step iterative method)
- 1. Sample classification
- 2. Learning weights of hyperedges
 - a) Fix current label information, and learn weights of hyperedges

- Q: Classify patient 6, and identify biomarkers (two step iterative method)
- 1. Sample classification
- 2. Learning weights of hyperedges
 - a) Fix current label information, and learn weights of hyperedges
 - b) Genes that interact with each other in should have similar weights

- Q: Classify patient 6, and identify biomarkers (two step iterative method)
- 1. Sample classification
- 2. Learning weights of hyperedges
 - a) Fix current label information, and learn weights of hyperedges
 - b) Genes that interact with each other in should have similar weights

- Q: Classify patient 6, and identify biomarkers (two step iterative method)
- 1. Sample classification
- 2. Learning weights of hyperedges
- 3. Repeat step 1 and 2 until stopping criteria satisfies

- Q: Classify patient 6, and identify biomarkers.
- 1. Sample classification
- 2. Learning weights of hyperedges
- 3. Repeat step 1 and 2 until stopping criteria satisfies
- 4. Rank hyperedges based on their weights: Highly ranked hyperedges can be potential biomarkers

Experiments 1

Baselines

- Support Vector Machines (SVMs) with linear and RBF kernels
- Rapaport et al, BMC bioinformatics 2007
- Li and Li, Bioinformatics 2008
- Hypergraph
- HyperPrior-LP
- HyperPrior-NB

Task

- Cancer outcome prediction + Biomarker identification
- Dataset (Gene expression)
 - Two groups (metastasis vs nonmetastasis)
 - 1. van't Veer et al, Nature 2002
 - 78 samples + 19 samples
 - 2. van de Vijver et al, New Engl. J. Med 2002
 - 295 samples (5 folds cross validation)
 - 3. Protein interaction networks

*The classification performance of all methods are evaluated using area under the receiver operating characteristics (ROC) score.

Classification results

	van 't Veer <i>et al.</i> van de Vijver <i>et</i>		et al.	
Algorithms	231 genes	326 genes	1464 genes	
SVM (linear)	0.857	0.676	0.671	
SVM (RBF)	0.857	0.681	0.667	
Rapaport <i>et al</i> .	0.869	0.682	0.665	
Li and Li	0.833	0.695	0.657	
Hypergraph	0.857	0.687	0.685	
HyperPrior-LP	0.881	0.697	0.692	
HyperPrior-NB	0.869	0.697	0.692	

On the van 't Veer *et al.* dataset, the AUC on the 19-patient test set is reported. On the van de Vijver *et al.* dataset, over the random 5-fold cross-validations (50 times on both the 326 genes and the 1464 genes), the mean AUCs are reported.

*231 genes reported in van't Veer *et* al. are used. *326 and 1,464 cancer related genes collected from *Ingenuity* and *Memorial Sloan Kettering Cancer Gene lists* are used in the second experiments **T. Hwang** et. al, **ICDM** 2008 Z. Tian, **T. Hwang**, R. Kuang, **Bioinformatics** 2009

Subnetwork identification

 Data integration can help to identify breast cancerrelated subnetworks

T. Hwang et. al, **ICDM** 2008 Z. Tian, **T. Hwang**, R. Kuang, **Bioinformatics** 2009

Biomarker discovery

	Known	vn Gene Ranking		
Disease		HyperGene	HyperGene	CC
	Gene	α=0.5, ρ=1	α=0.5, ρ=0.001	
	TP53	1	2	601
	BRCA1	14	19	629
	ESR1	17	22	208
	BARD1	51	72	562
	ATM	75	77	1054
	HRAS	96	81	437
	AKTI	99	154	1024
	TGFB1	130	152	760
	CASP8	142	201	1221
	PTEN	157	198	725
	PPM1D	182	60	266
	KRAS	183	257	1267
S	ERPINE1	207	118	973
	BRCA2	227	299	924
	PIK3CA	415	363	712
	STK11	632	609	773

The ranking of known breast cancer (OMIM#114480) susceptibility genes

Experiments 2

Baselines

- Support Vector Machines (SVMs) with linear and RBF kernels
- L₁-Support Vector Machines (SVMs)
- Rapaport et al, bioinformatics 2008 (Fused-SVM)
- Hypergraph
- HyperPrior-LP
- HyperPrior-NB

• Task

- Cancer outcome prediction + Biomarker identification
- Dataset (Copy number)
 - Two groups (by grade, stage, and metastasis)
 - 1. bladder tumor
 - 12 grade1 vs 45 grade 2&3
 - 16 stage T1 vs 32 stage T2+
 - 2. melanoma tumor
 - 35 metastasis vs 43 nometastasis

*The classification performance of all methods are evaluated using area under the receiver operating characteristics (ROC) score.

T. Hwang et. al, **ICDM** 2008 Z. Tian, **T. Hwang**, R. Kuang, **Bioinformatics** 2009

Classification results

Table 1. Classification performance on arrayCGH data

LOO errors	SVM (linear)	SVM (RBF)	L_1 -SVM	Fused SVM	Hypergraph	HyperPrior-LP	HyperPrior-NB
Bladder tumors (by grade)	9	9	12	7	11	6	6
Bladder tumors (by stage)	9	9	13	7	9	5	6
Melanoma tumors	10	10	8	7	7	7	7

This table shows the number of misclassified samples in the LOO cross-validation on the bladder cancer dataset with two different labeling schemes (by tumor grade or by cancer stage) and the melanoma cancer dataset.

Our methods achieved overall best performances!

Take home message

- Our proposed method that integrates genomic data with biological prior knowledge can help to improve cancer outcome prediction and discover cancer-related subnetworks in breast cancer
- Our proposed method also found cancer-related copy number variations with aCGH data experiments in melanoma and bladder cancer
- One should be careful to interpret results from network-based methods
- •**T. Hwang***, Z. Tian*, JP Kocher, R. Kuang, "Learning on Weighted Hypergraphs for Integrating Protein Interactions and Gene Expressions", IEEE International Conference on Data Mining, **ICDM 2008**
- •Z. Tian*, **T. Hwang***, and R. Kuang. "A Hypergraph-based Learning Algorithm for Classifying Gene Expression and arrayCGH data with Prior Knowledge", **Bioinformatics 2009**
- •Z. Tian*, **T. Hwang***, and R. Kuang. "A Hypergraph-based Learning Algorithm for Classifying arrayCGH data with Spatial Prior Knowledge", Proc. of IEEE International Workshop on Genomic Signaling Processing and Statistics, **GENSIPS 2009**
- *Joint first author

Network/pathway based methods for patient stratification

Motivation

- Somatic mutation, and copy number alternations (CNAs) at the distinct loci of the human genome may contribute to the development of cancers
- The systematic characterization of disrupted pathways by genomic alterations in human cancer can help to establish the refined genetic landscape of cancer

PARADIGM

- Given: genomic data (e.g., mutation, copy number, gene expression and etc), and pathway
- Task: Identify pathway activity of patient
 - Input: genomic data and pathway
 - Output: pathway activity (e.g., active or inactive)

THE TWO FOR THE INFORMATION OF PARADIGM, THE PARADIGM, THE PARADIGM, THE PARADIGM, THE PARADIGM, THE PARADIGM P

PARADIGM

• Pathway activities could be used to identify patient subgroups having different survival outcome

• Pathway activities could guide a clinical decision for efficient therapy

THE THE FIRST OF THE DEFINITION OF PARADIGM, THE PARADIGM, THE PARADIGM, THE PARADIGM, THE PARADIGM, THE PARADIGM PARADI

PARADIGM

- Pathway activities could be used to identify patient subgroups having different survival outcome
- Pathway activities could guide a clinical decision for efficient therapy

Limitation

- rely on existing pathway database
 - current knowledge of pathway is still incomplete (~4000 genes annotated with current existing pathway database)
- need to use independent algorithms to cluster patient samples
 - step 1) identify pathway activities
 - step 2) use pathway activities to discover patient subgroups

- Given: genomic data (e.g., mutation, or copy number), and protein-protein interaction networks
- Task: Identify significantly mutated subnetworks
 - Input: genomic data and protein interaction networks
 - Output: subnetwork

• Workflow

slide courtesy of Dr. Ben Raphael

• Results

slide courtesy of Dr. Ben Raphael

• Results

Limitation

- assume that gene-gene interaction networks are sparse
 - could not be applicable large functional linkage network
- could not incorporate existing biological prior knowledge
 - no data integration with pathway or other biological knowledge

slide courtesy of Dr. Ben Raphael

MEMo

Workflow

MEMo

Ciriello et. al., "Mutual exclusivity analysis identifies oncogenic network modules", Genome research 2012

Mutual exclusivity in PI(3)K/Akt

slide courtesy of Dr. Giovanni Ciriello

Mutual exclusivity in PI(3)K/Akt

slide courtesy of Dr. Giovanni Ciriello

Mutual exclusivity in PI(3)K/Akt

Limitation

- assume that gene-gene interaction networks are sparse
 - could not be applicable large functional linkage network
- rely on existing pathway database
 - could not find novel pathway

slide courtesy of Dr. Giovanni Ciriello

Patient stratification using genomic and pathway data integration

 Develop novel computational methods to integrate genomic data with biological prior knowledge

Input

Output

SJ Kim, T. Hwang, G.B. Giannakis, CIP 2012 T. Hwang and et. al., Nucleic Acids Research 2012 Matrix tri-fact orization

- Given: Gene expression and pathway data
- Task : Identify patient subgroups and pathway activities related with patient subgroups

SJ Kim, T. Hwang, G.B. Giannakis, CIP 2012 T. Hwang and et. al., Nucleic Acide Research 2012 EXPERIMENTS (TCGA)

- TCGA Ovarian Carcinoma: 377 patients with clinical data
- Gene Expression: 11,864 mRNA expression
- Pathway: KEGG pathway (186 pathways)

✓ Matrix tri-factorization can accurately identify patient subgroups having different survival outcome and pathways associated with patient subgroups

SJ Kim, T. Hwang, G.B. Giannakis, CIP 2012 T. Hwang and et. al., Nucleic Acide Research 2012 EXPERIMENTS (TCGA)

TCGA Ovarian Carcinoma: 377 patients with clinical data
Alteration: 11,864 copy number changes
J pathway (186 pathways)

different survival outcome and pathways associated with patient subgroups

Patient stratification using genomic and pathway data integration using animal model

 Develop novel computational methods to integrate cross-species genomic data for translational research

Input

Output

• Given: Dog and human gene expression, pathway data, and dog sugbgroup

- Task : Identify patient subgroups and pathway activities related with patient subgroups in human

• Given: Dog and human gene expression, pathway data, and dog sugbgroup

- Task : Identify patient subgroups and pathway activities related with patient subgroups in human

Experiments (Osteosarcoma)

- Osteosarcoma: 34 dogs (GSE27217) and 34 patients (GSE16091) with clinical data
- Pathway: Reactome pathway (430 pathways)
- 5 (short) vs 12 (long) months for dog subgroup

Ranking	Pathway
1	INFLUENZA LIFE CYCLE
2	CELL CYCLE CHECKPOINTS
3	STABILIZATION OF P53
4	S PHASE
5	DNA STRAND ELONGATION
6	SCF SKP2 MEDIATED DEGRADATION OF P27 P21
7	CYCLIN E ASSOCIATED EVENTS DURING G1 S TRANSITION
8	SIGNALING BY NGF
9	REGULATION OF INSULIN SECRETION BY GLUCAGON LIKE PEPTIDE 1
10	NEURORANSMITTER RECEPTOR BINDING
11	SYNTHESIS OF DNA
12	OPIOID SIGNALLING
13	SIGNALING BY WNT
14	ACTIVATION OF NMDA RECEPTOR UPON GLUTAMATE BINDING
15	VIF MEDIATED DEGRADATION OF APOBEC3G

Take home message

- Integrating genomic data with pathway database can help to improve an ability for patient stratification and pathway discovery
- Leveraging knowledge (i.e., pathway activities) from dog cancer can help to study human cancer
- Our proposed method is a general method, and applicable to other problems
 - Inner-species analysis: infer pathway activities from one data, and use them to study another data
 - Tissue or cancer type specific dysregulated pathway activity analysis

•SJ Kim, **T. Hwang***, Georgios B. Giannakis, "Sparse Robust Matrix Tri-factorization with Application to Cancer Genomics", International Workshop on Cognitive Information Processing, **CIP 2012**

•**T. Hwang**, Maoqiang Xie, Gowtham Atluri, Sanjoy Dey, Vipin Kumar, Changjin Hong and Rui Kuang. "Co-clustering Phenome-genome for Phenotype Classification and Disease Gene Discovery", **Nucleic Acids Research 2012**

Large-scale network-based integrative analysis identifies common pathways disrupted by copy number alterations across cancers

TaeHyun Hwang^{†1}, Gowtham Atluri², Rui Kuang², Vipin Kumar^{2,} Timothy Starr¹, Peter M Haverty³, Zemin Zhang³, Jinfeng Liu^{†3}

¹Masonic Cancer Center, ²Department of Computer Science and Engineering, University of Minnesota - Twin Cities; ³Department of Bioinformatics and Computational Biology, Genentech Inc.

*Joint work with Genentech

T. Hwang et. al, under review

Motivation

- 1. Comprehensive pathway activity map across 16 types of cancers
- 2. Common and cancer-type specific disrupted pathway
- 3. Network view how copy number alterations can affect pathway
- 4. Pathway signatures to identify patient subgroups

Overview

Experiments

- Data
 - 2172 patients from 16 different types of cancers using Affymetrix 250k sty SNPs array data [Beroukhim et al., Nature 2010]
 - Use pennCNV to measure CNA, and use GLAD to segmentation
 - Use GISTIC to find significantly altered copy number region
 - Human protein-protein interaction network from HPRD database (May 2010)
 - 9674 proteins and 34,998 protein interactions
 - Pathway database
 - KEGG, Biocarta, and Reactome from MSigD, and conserved subnetworks cross species

T. Hwang et. al, under review

Pathway activity view of cancers

Cancer type specific disrupted pathway

CYTOKINE: Cytokine Network INFLAM: Inflammatory Response IL5: IL 5 Signaling Pathway

Commonly disrupted pathway

TEL: Telomeres, Telomerase, Cellular Aging, and Immortality TGFB: TGF-beta TRKA: NTRK1

TGF-beta signaling pathway

Member genes in the pathway have <u>low</u> frequency! but...

T. Hwang et. al, under review TGF-beta signaling pathway

Commonly disrupted pathways across cancers correlate with clinical outcomes

Commonly disrupted pathways may allow stratification of cancers at the pathway level, which could lead to the development of more targeted therapeutic!

Shedden K, Taylor JMG, Enkemann SA, Tsao MS, Yeatman TJ, et al. (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nature medicine 14: 822-827

Commonly disrupted pathways across cancers correlate with clinical outcomes

Evaluation (Cancer gene enrichment)

www.nature.com/Oncogene

ORIGINAL ARTICLE

AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression

Y Li^{1,10}, TH Hwang^{1,2,10}, LA Oseth³, A Hauge⁴, RL Vessella^{5,6}, SC Schmechel^{7,8}, B Hirsch^{3,7,9}, KB Beckman⁴, KA Silverstein^{1,2} and SM Dehm^{1,7} **1: Joint first author**

\checkmark < 6 months for publication

- 2 months for data generation
- < 1 month for data analysis and validation

Motivation

• Reactivation of the androgen receptor (AR) during androgen depletion therapy (ADT) underlies castration-resistant prostate cancer (CRPCa).

• Alternative splicing of the AR gene and truncated AR variants lacking the AR ligand binding domain has emerged as an important mechanism of ADT-resistance in CRPCa.

• Truncated AR variants proteins were originally discovered and functionally characterized in the CRPCa 22Rv1 and CWR-R1 cell lines, and the LuCaP 86.2 PCa xenograft

•In a previous study, we demonstrated that altered AR splicing in CRPCa 22Rv1 cells was linked to a 35 kb intragenic tandem duplication of AR exon 3 and flanking sequences

✓ In this study, we wanted to investigate the link between AR gene structure alterations and enhanced synthesis of truncated AR variants in CRPCa CWR-R1 cell lines using paired-end sequencing data

Data preparation

- 2x76bp paired-end sequencing data using GAIIX illumina with SureSelect
 - 2x50bp paired-end seq using HiSeq
 - 2x76bp paired-end seq using Matepair
 - 2x150bp paired-end seq using MiSeq
- 6000X coverage

Structural Variation Call w/ Hydra

Aaron et al, Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome, Genome biology 2010

Structural Variation Discovery Visualization

Validation

Validation

Take home message

- Design experiments with both biologists and computational biologists from the beginning (should know which tools will be used)
 - CREST (longer sequences) vs Hydra (more depth coverage)
 - GAIIX, HiSeq, MiSeq, or Mate-pair (sequence length, insertion size)
 - Depth coverage (10X, 100X, or 1500X)
- Start with a small number of genes with higher depth coverage (due to the heterogeneity of cell population)
- Should understand existing tools (e.g., how it works, and what are limitations)
- Quality control!!!!!

•Yingming Li*, **TaeHyun Hwang***, LeAnn Oseth, Betsy Hirsch, Robert Vessella, Kenny Beckman, Kevin Silverstein, and Scott Dehm, "AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression", **Oncogene 2012**

*Joint first author

Acknowledgement

University of Minnesota

Rui Kuang, Ph.D Vipin Kumar, Ph.D Chad L. Myers, Ph.D Gotham Alturi Sean Landman Ze Tian Wei Zhang Maoqiang Xie, Ph.D Gang Fang

Masonic Cancer Center @ University of Minnesota

Scott Dehm, Ph.D Jaime Modiano, Ph.D David Lagaespada, Ph.D Kevin Silverstein,Ph.D

Boston University Chang Jin Hong,Ph.D Mount Sinai School of Medicine

Gaurav Pandey, Ph.D

Mayo Clinic

Dennis Wigle, M.D., Ph.D. Hugues Sicotte, Ph.D. Jean-Pierre Kocher, Ph.D.

Dept. of Bioinformatics and Computational Biology @ Genentech

Jinfeng Liu, Ph.D. Peter Havert, Ph.D. Zhaoshi Jiang, Ph.D. Zemin Zhang, Ph. D.

