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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.

P E R S P E C T I V E

306 VOLUME 17 | NUMBER 3 | MARCH 2011 NATURE MEDICINE

advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 

a Whole-genome analysis c Apply to independent
validation cohorts 

b

d

f

Generate signature of genes that
correlate with clinical parameter

Evaluate clinical performance

Clinical implementation

Time
S

ur
vi

va
l p

ro
ba

bi
lit

y 
(%

)

ColoPrint
1
0

e Regulatory approval

Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 

a Whole-genome analysis c Apply to independent
validation cohorts 

b

d

f

Generate signature of genes that
correlate with clinical parameter

Evaluate clinical performance

Clinical implementation

Time

S
ur

vi
va

l p
ro

ba
bi

lit
y 

(%
)

ColoPrint
1
0

e Regulatory approval

Figure 2 Development of a gene expression 
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expression profile starts with the large-scale 
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samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures.
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advantageous to combine genomics data with measures of pathway 
activity, potentially through the analysis of phosphoepitopes (see 
Proteomics) or by detecting gene expression signatures associated 
with pathway activation (see Gene expression). This approach should 
allow tumors to be defined by driver pathways, allowing clinicians to 
pick a targeted therapy to match the individual tumor genotype.

What kind of genomic information is required to match a patient 
with an optimal therapeutic agent? Patient response depends on a 
multitude of factors, including both host factors (for example, meta-
bolic differences) and those that are unique to the tumor. Companion 
diagnostics for targeted therapeutics generally test for a single genetic 
lesion. However, there is tremendous value in extending these tests to 
include common resistance mechanisms. The most obvious way to 
start is by looking for mutations in the gene that encodes the protein 
that is targeted by the drug. Patients with chronic myologenous 
 leukemia (CML) who develop resistance to imatinib mesylate typically 
harbor mutations in the kinase domain of the Philadelphia chromo-
some (BCR-ABL) that prevent drug binding. Detection of BCR-ABL 
mutations provides a reliable predictor of relapse and knowledge of 
the mutation makes it possible to select a suitable second-generation 
inhibitor34. Moving beyond the target, cancer cells may acquire muta-
tions in downstream pathway components that induce resistance. It 
is well established that lung and colon cancers that carry activating 
mutations in KRAS will not benefit from therapeutic agents that target 
EGFR18. Similarly, there is evidence that loss of the tumor suppressor 
phosphatase and tensin homolog (PTEN) or activating mutations in 
the PIK3CA gene, which encodes a kinase that acts downstream of 
human epidermal growth factor receptor 2 (HER2; also known as 
ERBB2/neu), confer resistance to HER2-targeted therapy in breast 
cancer35 (Fig. 3). The power of an unbiased genomics approach is that 
it can identify new pathway components and connections between 
pathways that influence patient response. As sequencing cancer 
genomes becomes routine, it will be important to adapt clinical trials 
to foster the discovery of such biomarkers.

Cancer genome sequencing is providing many new insights into 
tumor biology and it is useful to consider how this information might 
lead to the discovery of new biomarkers. The discovery of recurrent 
mutations in isocitrate dehydrogenase-1 (IDH1) in acute myeloid 
leukemia (AML) is one major finding that can be attributed to cancer 

genome sequencing21. IDH1 is an enzyme that catalyses the decarboxy-
lation of isocitrate. Mutations in IDH1 and the related IDH2 were pre-
viously identified in gliomas, but they had not been seen in AML31,36. 
In follow-up studies, mutations in IDH1 or IDH2 were found in 
16–33% of individuals with cytogenetically normal AML and were 
associated with poor outcome37–39. Initially, it was thought that these 
mutations simply inhibited the enzyme, but it has since been shown 
that they induce a neomorphic activity that results in the production 
of 2-hydroxyglutarate (2HG)40. Detection of 2HG has since been used 
to screen individuals for the presence of mutations in IDH1 or IDH2, 
and it may therefore be useful as a cancer biomarker. Although the 
precise role of 2HG in the development of AML remains an active area 
of research, this provides an example of specific metabolic changes that 
occur in cancer cells and could be exploited therapeutically.

Two recent studies have focused on defining genetic changes that 
occur during metastasis. These studies reveal the changing nature of 
the disease as tumor cells adapt to therapy and to new tissue environ-
ments. In an analysis of a basal-like breast cancer, Ding et al.41 used 
high-level sequence coverage to monitor the frequency of around thirty 
somatic mutations in a primary tumor, a metastasis and a xenograft 
from the same patient. As well as finding de novo mutations during 
metastasis, the authors found strong evidence for selection of some 
mutant alleles (for example, a mutation in PTPRJ (encoding protein 
tyrosine phosphatase, receptor type, J) was enriched 20-fold in the 
metastasis and 40-fold in the xenograft)41. Similar patterns of selection 
were identified in a metastasis from a lobular breast cancer; however, 
in this case there were many more de novo mutations6. These findings 
shed light on the genetic heterogeneity that is present in tumors, and 
undoubtedly this will become even more apparent as sequencing sen-
sitivity improves and as we begin to assess the epigenetic landscape. 
At first these results seem discouraging because they suggest that it 
will be difficult to counter the diverse array of mutations present in a 
tumor, but they also hold great promise for revolutionizing the way in 
which we treat cancer. The ability to detect mutant alleles at very low 
frequencies might allow oncologists to target these cells before they 
have a chance to expand and spread.

High-throughput sequencing might also provide a flexible platform 
with which to monitor therapy response in solid tumors. Structural 
rearrangements provide a unique fingerprint that can be used to detect 
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Figure 2 Development of a gene expression 
biomarker. (a) Unbiased discovery of a gene 
expression profile starts with the large-scale 
analysis of gene expression on a series of tumor 
samples of known clinical outcome. (b) Using 
bioinformatics, the set of genes is identified 
that correlates best with the relevant clinical 
parameter. (c,d) In the next step, this ‘gene 
signature’ is validated on a large cohort of 
additional clinical samples of known outcome 
(c), and the clinical performance is evaluated in 
comparison with the generally accepted clinical 
parameters (d). (e) Regulatory approval is still 
underdeveloped but might involve clearance by 
CMS under the CLIA guidelines and the College 
of American Pathologists (CAP) in the US.  
In Europe, both an ISO17025 accreditation 
of the laboratory and a CE-marking (indicating 
that it has met EU consumer safety, health or 
environmental requirements) of the diagnostic 
equipment are required. (f) Only after this 
process is completed should these tests be used 
to stratify patients by molecular signatures. Ian J Majewski & René Bernards.,” Taming the dragon: genomic biomarkers to individualize the treatment of cancer”, Nature Medicine 2011
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ABSTRACT
Motivation: A central problem in biomarker discovery from large-
scale gene expression or single nucleotide polymorphism (SNP)
data is the computational challenge of taking into account the
dependence among all the features. Methods that ignore the
dependence usually identify non-reproducible biomarkers across
independent datasets. We introduce a new graph-based semi-
supervised feature classification algorithm to identify discriminative
disease markers by learning on bipartite graphs. Our algorithm
directly classifies the feature nodes in a bipartite graph as
positive, negative or neutral with network propagation to capture
the dependence among both samples and features (clinical
and genetic variables) by exploring bi-cluster structures in a
graph. Two features of our algorithm are: (1) our algorithm
can find a global optimal labeling to capture the dependence
among all the features and thus, generates highly reproducible
results across independent microarray or other high-thoughput
datasets, (2) our algorithm is capable of handling hundreds of
thousands of features and thus, is particularly useful for biomarker
identification from high-throughput gene expression and SNP
data. In addition, although designed for classifying features, our
algorithm can also simultaneously classify test samples for disease
prognosis/diagnosis.
Results: We applied the network propagation algorithm to study
three large-scale breast cancer datasets. Our algorithm achieved
competitive classification performance compared with SVMs and
other baseline methods, and identified several markers with clinical
or biological relevance with the disease. More importantly, our
algorithm also identified highly reproducible marker genes and
enriched functions from the independent datasets.
Availability: Supplementary results and source code are available at
http://compbio.cs.umn.edu/Feature_Class.
Contact: kuang@cs.umn.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

∗To whom correspondence should be addressed.

1 INTRODUCTION
Determining the causative factors of disease is critical for improving
clinical treatment and understanding the biological principles of
disease. Recent developments in high-throughput technology allow
large-scale measurement of genomic variations such as gene
expression and single nucleotide polymorphisms (SNPs) of a
population. Associating these genomic and genetic variations with
disease-related phenotypes provides good potential for elucidating
etiology of diseases (Rebbeck et al., 2007). It has also been shown
that the discovered biomarkers can possibly provide better prognosis
and diagnosis than the currently available clinical measures for risk
assessment of patients with various diseases (Gevaert et al., 2006;
van’t Veer et al., 2002). However, computational identification of
biomarkers of disease from high-throughput genomic data is an
increasingly challenging problem. High-throughput data are both
expensive to generate and difficult to obtain. Typically, only a small
number of samples are available for analyzing tens of thousands of
genes or even millions of SNPs. This analysis suffers from the curse
of ‘high-dimension and low-sample size’, the number of samples
being too limited to represent the class distribution of phenotypes.

Common statistical criteria for biomarker discovery are
correlation coefficients (van’t Veer et al., 2002) and statistics used
with hypothesis testing methods such as the t-test and Wilcoxon
rank-sum test (Dudoit et al., 2002). These statistical methods rank
the features only based on their individual correlation with the
phenotypic label. Feature selection is a more general machine
learning approach for identifying biomarkers (Sun et al., 2007).
The objective of feature selection is to find a (minimal) subset of
features that can maximize the prediction performance of a classifier.
However, the curse of dimensionality makes feature selection on
high-throughput data particularly hard and unstable. To maximize
the prediction performance of a classifier, existing algorithms rely
on heuristic strategies searching for a sub-optimal feature set.
Moreover, the sub-optimal feature set might not be unique given
that there are many co-expressed genes or SNPs with high-linkage
disequilibrium, which have similar discriminative power. Thus,
feature selection algorithms often fail to reveal the modularity on
the features when used for biomarker identification. Many other
supervised machine learning techniques have also been applied to
identify clinical and genetic markers of disease. These approaches
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Our graph-based learning algorithm captures dependence between
all features simultaneously by exploring the graph structure, which is
essentially a non-linear method for selecting features. After relaxing
the labels into real numbers, our method can always converge toward
the unique global optimum using an efficient network propagation
algorithm. The time complexity of the algorithm scales linearly with
the total number of features given that our algorithm converges
within a small number of iterations. Thus, our method is stable
and fast to generate replicable results across independent datasets,
even under the curse of dimensionality in biomarker identification.
Finally, our semi-supervised learning algorithm can use unlabeled
data in the process of classifying the features, which can possibly
improve the quality of the selected features.

2 METHOD
In this section, we first define our formulation of marker discovery
and disease diagnosis/prognosis as a semi-supervised learning problem
on bipartite graphs. An efficient network propagation algorithm is then
introduced to compute the closed-form solution of the objective function
for the semi-supervised learning.

2.1 Semi-supervised learning on bipartite graphs
We formally define an undirected bipartite graph G= (V ,U,E,w), where
V and U are two disjoint vertex sets and E ∈V ×U is a set of weighted
edges; each edge (v,u)∈E connects two vertices v and u with a positive
weight w(v,u). Let d(v)=∑

(v,u)∈E w(v,u) and d(u)=∑
(v,u)∈E w(v,u) denote

the sum of the weights of the edges on the same vertex. Let y :V ∪U →
{−1,0,+1} be the initialization function assigning initial labels to the labeled
and unlabeled vertices in V and U. Let f denote a label-assignment function
over vertex sets V and U. If we let V be the sample set and U be the
variables/feature set, a label assignment on a variable indicates its association
with a sample class. Under this context, we define an objective function over
G= (V ,U,E,w) as follows,

!(f ) =
∑

(v,u)∈E

w(v,u)

(
f (v)

√
d(v)

− f (u)
√

d(u)

)2

+"
∑

v∈V

(f (v)−y(v))2 +"
∑

u∈U

(f (u)−y(u))2, (1)

where ">0 is a regularization parameter for balancing the cost terms on the
right side of the equation. The first term enforces a consistency between the
strongly connected vertex pairs (u,v)∈V ×U. This term penalizes those f
functions with a cost proportional to the w(v,u) if f assigns different labels
to v and u. The second term is a fitting term which keeps the new label
assignment consistent with the initial labeling. This can be viewed as a
supervised way of minimizing the training errors measured by the difference
between the initial labels y(v) and the new label f (v) for labeled vertices
v∈V . For the unlabeled vertices v∈V with y(v)=0, the second term is used
to regularize these f (v)s, such that the total cost is constrained. The third
term is used in the same spirit to constrain the cost on the vertices in U.

If we restrict the labels to discrete values, i.e. f :V ∪U →{−1,0,+1},
minimizing !(f ) is NP hard. But if we relax the label values as f :V ∪U →
R, !(f ) is convex and differentiable. Let DU be a diagonal matrix with
Diuiu =d(u) and DV be a diagonal matrix with Diviv =d(v), where v∈V and
u∈U, and iv and iu are the index of vertices u and v in the matrix. We define
the normalized connectivity matrix S of G as follows,

S =



 0 D
− 1

2
V ∗W ∗D

− 1
2

U

D
− 1

2
U ∗WT ∗D

− 1
2

V 0



,

where W denotes a |V | by |U| matrix with Wiv,iu =w(v,u). Similar to the
derivation in Zhou et al. (2004), we can rewrite Equation (1) as follows,

!(f ) = [f (V )T f (U)T ]∗ (I −S)∗
[

f (V )
f (U)

]

+"

∥∥∥∥

[
f (V )
f (U)

]
−

[
y(V )
y(U)

]∥∥∥∥
2

,

where I is the identity matrix. We then differentiate !(f ) with respect to f
to compute the closed-form solution f ∗ for minimizing !(f ),

∂!

∂f
=2(I −S)∗ f ∗ +2"(f ∗ −y)=0.

Let α=1/(1+") and after rearrangement, the closed-form solution f ∗ can
be computed as follows,

f ∗ = "

1+"

(
I − 1

1+"
S
)

∗ y = (1−α)(I −αS)−1 ∗y. (2)

2.2 Network propagation algorithm
It is computationally intensive to compute the matrix inverse in Equation (2),
when the graph G is large and contains a lot of non-zero entries in S.
We use a network propagation algorithm to compute the closed-from solution
more efficiently. The propagation algorithm iteratively performs a diffusion
operation between the two vertex sets in both directions. Theoretically, the
diffusion process will finally converge to the closed-form solution f ∗ defined
in Equation (2). The network propagation algorithm is described as follows.

(1) Normalize the bipartite graph by computing B=D
− 1

2
V ∗W ∗D

− 1
2

U .

(2) Choose parameter α and perform a two direction propagation, until
convergency (t denotes the time step):

• For each v∈V ,
f (v)t = (1−α)y(v)+α

∑
u∈U Biviu f (u)t−1

• For each u∈U,
f (u)t = (1−α)y(u)+α

∑
v∈V Biviu f (v)t−1

(3) The sequence f t converges to its limit f ∗ and f ∗ gives the class labels
on the unlabeled vertices in both V and U.

This algorithm propagates the label information of every vertex to its
neighbors in the other vertex set. This propagation process will leverage
the activation values of the vertices in a densely connected neighborhood.
In other words, if we assume that the vertices with the same label tend to
be in the same clusters in the graph, the vertices in the same class will
eventually converge to having similar values (same labels). This iterative
propagation process was originally proposed to spread the activation values
in a psychology network (Shrager et al., 1987). It is intuitively consistent
with the definition of our objective function in Equation (1). In Figure 1C,
we show the predictions of network propagation on a toy graph. Note that
in the method by Kuang et al. (2005), a similar algorithm has been used for
protein ranking, but the normalization of S is different and no regularization
framework was introduced.

We can show that this algorithm will finally converge to the closed-form
solution of the objective function !(f ). We first rewrite the network diffusion
algorithm in matrix form as,

f (V )t = (1−α)y(V )+αB∗ f (U)t−1

f (U)t = (1−α)y(U)+αBT ∗f (V )t−1,

which can be rearranged as f t = (1−α)y+αS∗ f t−1. Following the proof by
Zhou et al. (2004), we can show that f converges to f ∗ = (1−α)(I −αS)−1 ∗y,
which is exactly the closed-form solution in Equation (2).

The time complexity of the network propagation algorithm is
O(k|V ||U|), where k is the number of iterations for reaching convergence.

2025
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!! Regularization !

T. Hwang et. al, Bioinformatics 2008

✓ Use labeled samples to classify unlabeled samples and genes 
by exploring bi-cluster structures of the graph
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Theoretically, k depends on some properties of the graph such as the
eigenvalues of its Laplacian (Bengio et al., 2006). Empirically, we observe
that our network propagation algorithm converges very fast on the bipartite
graphs in our experiments. For example, when the convergence is defined
as the maximum change of activation values over all the graph nodes being
smaller than 1e−9, our algorithm converges between 10 and 200 iterations,
depending on the choice of the α parameter, on a dataset with 24 000 gene
expressions (about 48 000 features in the graph) .

3 EXPERIMENTS
We evaluated the network propagation algorithm on three public
breast cancer datasets. We first show that our algorithm is a highly
competitive classification algorithm in Section 3.2, and then we
show that our algorithm identifies highly reproducible marker genes
on independent microarray datasets in Section 3.3. We also analyze
the convergence rate and measure the empirical running time of
the network propagation algorithm in Section 3.4. Finally, we
validate the marker genes identified by network propagation by
comparing with known cancer genes in the literature and checking
their biological functions in Section 3.5.

3.1 Breast cancer datasets

We used three independent large-scale microarray gene expression
breast cancer datasets (van de Vijver et al., 2002; van’t Veer et al.,
2002; Wang et al., 2005) in our experiments. The three datasets
were generated for studying breast cancer metastasis. The dataset
(Rosetta dataset) in van’t Veer et al. (2002) measures expression
profiles of 24 481 genes generated by Agilent (Santa Clara, CA)
oligonucleotide Hu25K microarrays as well as eight clinical
variables: age, estrogen receptor positive (ERp), progesterone
receptor positive (PRp), tumor size, tumor grade, angioinvasion,
lymphocytic infiltration and BRCA1 mutation. This dataset contains
97 patient samples. Among the 97 patients, 51 patients had a good
prognosis, meaning being free of disease after their diagnosis for
an interval of at least 5 years, and 46 patients had developed
distant metastasis within 5 years. The van de Vijver et al. (2002)
dataset contains microarray gene expressions produced by the same
technique for generating the Rosetta dataset on 295 samples (194
with good outcome and 101 with poor outcome). The details of the
quantization and normalization of the scanned microarray images
of the two datasets are described in van’t Veer et al. (2002) and
van de Vijver et al. (2002). The Wang et al. (2005) dataset was
produced by the Affymetrix oligonucleotide microarray U133a
GeneChip . The expression of 22 283 transcripts were collected from
total RNA of frozen samples from 286 lymph-node-negative breast
cancer patients. Among the 286 patients, 95 had developed cancer
metastasis within 5 years and 114 had been free of metastasis for at
least 8 years. These two groups of patients (209 in total) are used
in our experiments. We normalized the Wang et al. dataset with
GeneSpring (version 7.0) by per-gene and per-chip median polish.

3.2 Sample classification

To validate that the identified discriminant features are indeed
strongly correlated with the patient classes and can be used to
classify samples accurately, we measured the classification results
on the test samples. We compared the classification performance
of the network propagation algorithm against SVMs with RBF
kernel and linear kernel (Vapnik, 1998), linear discriminant analysis

Table 1. Sample classification

Algorithms Rosetta Vijver Wang

Clinical Genes Genes Genes

(A) Classification results on three datasets
Network propagation 0.788 0.740 0.667 0.564

SVM (linear) 0.773 0.730 0.662 0.536
SVM (RBF) 0.783 0.737 0.661 0.568

Naïve Bayes 0.795 0.617 0.476 0.554
LDA 0.579 0.740 0.648 0.502

(B) Comparison between network propagation
and the baseline algorithms
NP versus SVM 278/31/191 247/27/226 242/86/172 309/25/166

(linear)
NP versus SVM 248/44/208 214/124/162 254/81/165 137/130/233

(RBF)
NP versus Naïve 144/106/250 393/10/97 466/3/31 261/24/215

Bayes
NP versus LDA 460/8/32 232/36/232 297/61/142 359/15/126

Panel A: the mean ROC scores of classifying patients with good/poor prognosis in the
Rosetta dataset, the van de Vijver et al. dataset and the Wang et al. dataset using network
propagation (NP), SVMs with linear and RBF kernels, naïve Bayes classifier and LDA.
The two best performing algorithms in each experiment are marked in bold.
Panel B: the number of times of win/draw/loss on classification performance between
network propagation and the baseline algorithms.

(LDA) and naïve Bayes classifier. The classification performance
is evaluated using the receiver operating characteristics (ROC)
score: the normalized area under a curve plotting the number of
true positives against the number of false positives by varying a
threshold on the decision values (Gribskov and Robinson, 1996). In
all experiments, we run 5-fold cross-validation on the whole dataset.
An additional cross-validation on the training set is used to select
the best parameters and we compute ROC scores on the test set. We
repeated the process 100 times and report the mean and the variance
of the ROC scores for each method.

We tested the classification performance of the network
propagation algorithm on the three datasets in four different
experiment setups: (1) using eight clinical variables on the Rosetta
dataset; (2) using all 24 481 gene expressions on the Rosetta dataset;
(3) using all 24 481 gene expressions on the van de Vijver et al.
(2002) dataset; (4) using all 22 283 gene expressions on the Wang
et al. (2005) dataset. We prune the gene expression features with
a cutoff of 0.3 on the absolute values of correlation coefficients
calculated on the training samples in Experiment (2) and (3) and
0.2 in Experiment (4). In Table 1(Panel A), we report the mean
of the ROC scores computed from 100 runs of 5-fold cross-
validation on each dataset. The variance of all the methods are
similar in each experiment, and are thus reported in Supplementary
Tables 1–5. In Table 1(Panel B), we also report how many times
network propagation wins or loses to the others. For a more rigorous
comparison, we calculated the P-values with one-sided paired t-test
or proportion test to evaluate whether network propagation performs
better than the other algorithms over 100 runs of randomized 5-fold
cross-validations. Overall the proposed network propagation has
very competitive performance (see Supplementary Tables 1–5 for
details).
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*The classification performance of all methods are evaluated using area under the receiver operating 
characteristics (ROC) score.

Classification results
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Identifying biomarkers by feature classification

The results in Table 1(Panel A) show that in all experiments,
network propagation is always among the two best performing
algorithms. Although the naïve Bayes classifier performs best on
the clinical data, it does not handle gene expression data well in
the other three experiments. LDA does not perform well on the
clinical data; furthermore, it is the worst performing algorithm
on Wang et al. dataset. SVM with linear kernel and RBF kernel
also perform stably well in all experiments. Although SVM with
RBF kernel achieves the highest average ROC scores on the Wang
et al. dataset and SVM with linear kernel is the best performing
algorithm on the van de Vijver et al. dataset, network propagation
is the best performing algorithm in the other two experiments. It
appears that the difference between the performance of network
propagation and SVMs are marginal if only measured by the mean
ROC scores. However, the pairwise comparison between network
propagation and SVMs shows that the differences are statistically
significant either by the number of loss and win or by P-values.
The comparisons with the baseline algorithms show that network
propagation is a competitive classification algorithm for cancer
outcome prediction and statistically, network propagation also has
more robust performance in the four experiments.

3.3 High reproducibility of marker genes
To verify that network propagation identifies highly reproducible
marker genes on independent microarray datasets, we report the
number of common marker genes identified in the van de Vijver
et al. dataset and Wang et al. dataset. Since the gene expressions
in the two datasets are produced on different microarray platforms,
there are only 8733 common genes that can be matched by the probe
names. Thus, in this analysis we focus on using the labels of all the
patients to identify the marker genes from the 8733 common genes
independently on the two datasets.

After we ran network propagation to classify the gene features, we
ranked the genes by the absolute value of their z-scores calculated
from the activation values. We compared the percentage of common
genes between the top-ranked genes in the two datasets identified by
each method in Figure 2. We tested network propagation with three
different α-values (0.95, 0.5 and 0.1) and compared them with the
commonly used correlation coefficients for identifying differentially
expressed genes, SVM with linear kernel and the random case.
The random case is calculated by the average ratio of common genes
identified by network propagation on bipartite graphs with randomly
permuted edges.

It is clear in Figure 2 that network propagation identifies
significantly more reproducible marker genes on the two datasets.
For example, among the top-100 genes selected by network
propagation from the two datasets, there are 32 common genes
when α=0.95, 14 common genes when α=0.5 and 6 common
genes when α=0.1, while SVM with linear kernel and correlation
coefficients can only identify two common genes. One interesting
observation is that the α parameter strongly influences the
percentage of common genes: the larger the α parameter, the
more the common genes identified. This can be explained by
our optimization formulation in Equation (1); when α is large,
we put more weight on the cluster structures in the bipartite
graph and thus, network propagation favors the modularity
structure in the gene expressions by assigning highly consistent
weights to the coexpressed genes. In other words, those genes
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Fig. 2. Common marker genes identified by network propagation on the van
de Vijver et al. dataset and the Wang et al. dataset. The x-axis is the number
of selected marker genes ranked by z-scores converted from their activation
values. The y-axis is the percentage of the overlaps between the selected
markers from the two datasets.

that are highly coexpressed in the related functional modules
will get highly weighted in both datasets. When α is close to 1,
our algorithm almost becomes a completely unsupervised learning
algorithm; on the contrary, when α is close to 0, our algorithm
is similar to computing correlation coefficients for the features.
Because our algorithm uses both cluster structures and label
information to identify marker genes, it can retrieve more overlapped
marker genes than those methods that ignore the dependence among
the gene features, such as correlation coefficients and SVM with
linear kernel. Our result also implies that on the two microarray
datasets, although the overlap between the rankings of genes is
almost random if the significance is computed independently, the
modular structures between genes are still preserved. Network
propagation is an effective way of exploring the modular structures
to produce a more reliable gene ranking.

3.4 Convergence rate and running time
To test the convergence and the scalability of our network
propagation algorithm, we measured the convergence rate and the
running time of network propagation on the Rosetta dataset (97
samples, 24 481 genes), the van de Vijver et al. dataset (295 samples,
24 481 genes) and the Wang et al. dataset (209 samples, 22 283
genes). We define the convergence as the maximum change of
activation values over all the graph nodes being smaller than 1e−9.
Theoretically, the convergence rate is decided by the Laplacian of
the bipartite graph, which in our case is strongly related to the
choice of the α parameter. We tested nine different α parameters
and reported the running time and the number of iterations for
reaching convergence in Figure 3. For all the choices of α parameter
on the three datasets, network propagation converges within 200
iterations. When α is small, the algorithm converges in very few
iterations. Intuitively, this can be explained by the nature of network
propagation: when α is large, the propagation operation puts more
weight on the graph structure and less weight on the relatively static
label information, and it takes more iterations to fully explore the
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Take home message
T. Hwang et. al, Bioinformatics 2008

• We proposed a novel network-based learning algorithm to classify genes 
and patients in the bipartite graph

• Exploring the cluster structure of the  bipartite graph (e.g., co-expression) 
could help to accurately predict cancer outcome and identify reproducible 
biomarker

• The proposed method is general method, and applicable for other genomic 
data (e.g., SNPs, copy number variation, and clinical data)

• No improvement has been achieved from simple data integration

•T. Hwang, H. Sicotte, Z. Tian, B. Wu, JP Kocher, D. Wigle, V. Kumar, R. Kuang, “Robust 
and efficient identification of biomarker by classifying features on graph”, Bioinformatics 
2008

•T. Hwang, and R. Kuang. “A Comparative study of breast cancer microarray gene 
expression profiles using label propagation”, SDM 2008

•T. Hwang, H. Sicotte, JP Kocher, D. Wigle, V. Kumar, R. Kuang, “Identifying clinical and 
genetic markers of human disease by classifying features on graphs”, Technical Report 
UMN-CS-07-021 2007

- Chronic Fatigue Syndrome (SNPs, Gene Expression Data)



Biological prior knowledge

Ian W Taylor et al., Dynamic modularity in protein interaction networks predicts breast cancer outcome, Nature Biotechnology 2009

• Protein-protein interaction networks can provide
• Modular structures of genes having similar functions, and involved in same 

pathways  

• Cancer genes tend to interact with each other in protein-protein interaction 
networks (PPI)

BRCA1
ESR1

MAP3K1

SRC



Network-based method
• Two step approach

: Best available approaches are often two step approaches:
  1) Use seed genes from data and identify subnetworks 

  2) Use classifiers (e.g., SVM) with selected genes (member genes in the 
subnetworks) to predict clinical outcomes
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Protein–protein interaction networks are used to assign sets of genes to discrete subnetworks. Gene expression profiles of tissue samples drawn from each type of
cancer (i.e., metastatic or non-metastatic) are transformed into a ‘subnetwork activity matrix’. For a given subnetwork Mk in the interaction network, the activity is a
combined z-score derived from the expression of its individual genes. After overlaying the expression vector of each gene on its corresponding protein in the
interaction network, subnetworks with discriminative activities are found via a greedy search. Significant subnetworks are selected based on null distributions
estimated from permuted subnetworks (see Materials and methods). Subnetworks are then used to identify disease genes, and the subnetwork activity matrix is
also used to train a classifier.

Box 1 Schematic overview of subnetwork identification

Network classification of breast cancer
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Network-based method
• Two step approach

: Best available approaches are often two step approaches:
  1) Use seed genes from data and identify subnetworks 

  2) Use classifiers (e.g., SVM) with selected genes (member genes in the 
subnetworks) to predict clinical outcomes
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Network-based method
• Two step approach

: More reproducible biomarker & accurate cancer outcome prediction!
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the keys for understanding at least some of these pathways are
encoded in the protein network.

Materials and methods

Scoring subnetworks
A subnetwork is defined as a gene set that induces a single connected
component in the protein–protein interaction network. Given a
particular subnetwork M, let a represent its vector of activity scores
over the tumor samples, and let c represent the corresponding vector of
class labels (metastatic or non-metastatic). To derive a, expression
values gij are normalized to z-transformed scores zij which for
each gene i has mean m¼0 and s.d. s¼1 over all samples j (Box 1).
The individual zij of eachmember gene in the subnetwork are averaged
into a combined z-score, which is designated the activity aj. Many
types of statistic, such as the t or Wilcoxon score, could be used to
score the relationship between a and c. In this study, we define the
discriminative score S(M) as MI(a0,c), the mutual information MI
between a0, a discretized form of a, and c

S ðMÞ ¼ MIða0; cÞ ¼
X

x2a0

X

y2c
pðx; yÞ log pðx; yÞ

pðxÞ pðyÞ

where x and y enumerate values of a and c, respectively, p(x, y) is the
joint probability density function (pdf) of a0 and c, and p(x) and p(y)
are themarginal pdf’s of a0 and c. To derive a0 from a, activity levels are
discretized into log 2ð# of samplesÞ þ 1b c ¼ 9 equally spaced bins
(Tourassi et al, 2001). A rationale for usingMI in cancer classification is
to capture potential heterogeneity of expression in cancer patients
(Tomlins et al, 2005), that is, differences not only in themean but in the
variance of expression. For examples of the computation of MI see
Supplementary Figure S5. The particular gene set maximizing S(M) is
regarded as optimal for classification.

Searching for significant subnetworks
Given the discriminative score function S, a greedy search is performed
to identify subnetworks within the protein–protein interaction net-
work forwhich the scores are locallymaximal. Candidate subnetworks
are seeded with a single protein and iteratively expanded. At each
iteration, the search considers addition of a protein from the neighbors
of proteins in the current subnetwork and within a specified network
distance d from the seed. The addition that yields the maximal score
increase is adopted; the search stops when no addition increases the
score over a specified improvement rate r. Given that the median
distance between any two proteins in the human protein–protein
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Network-based method
• Two step approach

: More accurate cancer outcome prediction!
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the keys for understanding at least some of these pathways are
encoded in the protein network.

Materials and methods

Scoring subnetworks
A subnetwork is defined as a gene set that induces a single connected
component in the protein–protein interaction network. Given a
particular subnetwork M, let a represent its vector of activity scores
over the tumor samples, and let c represent the corresponding vector of
class labels (metastatic or non-metastatic). To derive a, expression
values gij are normalized to z-transformed scores zij which for
each gene i has mean m¼0 and s.d. s¼1 over all samples j (Box 1).
The individual zij of eachmember gene in the subnetwork are averaged
into a combined z-score, which is designated the activity aj. Many
types of statistic, such as the t or Wilcoxon score, could be used to
score the relationship between a and c. In this study, we define the
discriminative score S(M) as MI(a0,c), the mutual information MI
between a0, a discretized form of a, and c

S ðMÞ ¼ MIða0; cÞ ¼
X

x2a0

X

y2c
pðx; yÞ log pðx; yÞ

pðxÞ pðyÞ

where x and y enumerate values of a and c, respectively, p(x, y) is the
joint probability density function (pdf) of a0 and c, and p(x) and p(y)
are themarginal pdf’s of a0 and c. To derive a0 from a, activity levels are
discretized into log 2ð# of samplesÞ þ 1b c ¼ 9 equally spaced bins
(Tourassi et al, 2001). A rationale for usingMI in cancer classification is
to capture potential heterogeneity of expression in cancer patients
(Tomlins et al, 2005), that is, differences not only in themean but in the
variance of expression. For examples of the computation of MI see
Supplementary Figure S5. The particular gene set maximizing S(M) is
regarded as optimal for classification.

Searching for significant subnetworks
Given the discriminative score function S, a greedy search is performed
to identify subnetworks within the protein–protein interaction net-
work forwhich the scores are locallymaximal. Candidate subnetworks
are seeded with a single protein and iteratively expanded. At each
iteration, the search considers addition of a protein from the neighbors
of proteins in the current subnetwork and within a specified network
distance d from the seed. The addition that yields the maximal score
increase is adopted; the search stops when no addition increases the
score over a specified improvement rate r. Given that the median
distance between any two proteins in the human protein–protein
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Disadvantage:

 - Use heuristic function to identify subnetworks

 - Do not utilize interactions between genes when perform classification
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ABSTRACT
Motivation: Incorporating biological prior knowledge into predictive
models is a challenging data integration problem in analyzing high-
dimensional genomic data. We introduce a hypergraph-based semi-
supervised learning algorithm called HyperPrior to classify gene
expression and array-based comparative genomic hybridization
(arrayCGH) data using biological knowledge as constraints on graph-
based learning. HyperPrior is a robust two-step iterative method
that alternatively finds the optimal labeling of the samples and the
optimal weighting of the features, guided by constraints encoding
prior knowledge. The prior knowledge for analyzing gene expression
data is that cancer-related genes tend to interact with each other in
a protein–protein interaction network. Similarly, the prior knowledge
for analyzing arrayCGH data is that probes that are spatially nearby
in their layout along the chromosomes tend to be involved in the
same amplification or deletion event. Based on the prior knowledge,
HyperPrior imposes a consistent weighting of the correlated genomic
features in graph-based learning.
Results: We applied HyperPrior to test two arrayCGH datasets and
two gene expression datasets for both cancer classification and
biomarker identification. On all the datasets, HyperPrior achieved
competitive classification performance, compared with SVMs and
the other baselines utilizing the same prior knowledge. HyperPrior
also identified several discriminative regions on chromosomes and
discriminative subnetworks in the PPI, both of which contain cancer-
related genomic elements. Our results suggest that HyperPrior
is promising in utilizing biological prior knowledge to achieve
better classification performance and more biologically interpretable
findings in gene expression and arrayCGH data.
Availability: http://compbio.cs.umn.edu/HyperPrior
Contact: kuang@cs.umn.edu
Supplementary information: Supplementary data are available at
bioinformatics online.

1 INTRODUCTION
In the past decade, numerous cancer researchers have actively
investigated high-throughput genomic data to reveal the molecular
mechanisms underlying cancer development and progression.

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

DNA copy number variations (CNVs) measured by array-
based comparative genomic hybridization (arrayCGH), and
microarray gene expressions are among the most widely
studied high-throughput data (Sawyers, 2008). Microarray gene
expressions provide a genome-wide quantification of messenger
RNA abundance, while arrayCGH data quantify the events of
amplification or deletion of large DNA segments on chromosomes.
A large number of high-resolution arrayCGH datasets and gene
expression datasets were generated to study many different cancers
(Glinsky et al., 2004; Pole et al., 2006; Tonon et al., 2005; van’t
Veer et al., 2002). In these studies, two major objectives were (i) to
detect highly discriminative chromosomal copy number aberration
regions or gene expression patterns as biomarkers of cancer-relevant
phenotypes; and (ii) to build reliable predictive models based on the
biomarkers for cancer sample classification.

Although many interesting and promising findings were reported
in these studies, concerns have been raised on the unstable
and inconsistent results in cross-validations and cross-platform
comparisons due to the relatively small sample sizes in the studies
(Dupuy and Simon, 2007). To address the problem, researchers
have proposed including other complementary genomic information
such as pathways or functional annotations to aid model building
and biomarker discovery. It is believed that the prior knowledge
from complementary data can generate more robust models
and more consistent discoveries across independent studies. For
gene expression profiles, the availability of large protein–protein
interaction networks (PPI networks), which contain information
on gene functions, pathways and modularity of gene regulations,
provides a desirable source of data for the purpose (Aragues et al.,
2008; Chuang et al., 2007; Rapaport et al., 2007). In arrayCGH
data, microarray comparative genomic hybridization measures copy
number information distributed along the genome at different
resolutions. This information typically includes thousands of spot
intensities. Intuitively, neighboring spots on the chromosomes tend
to be highly correlated because a DNA aberration can expand to
neighboring intervals (Rapaport et al., 2008). However, designing a
unified strategy to integrate gene expressions with protein–protein
interactions or to integrate arrayCGH data with the chromosomal
spatial information is still a challenging data integration problem,
since standard classification and feature selection methods do not
meet the complexity of a joint learning on two different data
types.

In this article, we propose a hypergraph-based iterative learning
algorithm called HyperPrior to integrate genomic data with general
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Abstract

Building reliable predictive models from multiple com-
plementary genomic data for cancer study is a crucial
step towards successful cancer treatment and a full under-
standing of the underlying biological principles. To tackle
this challenging data integration problem, we propose a
hypergraph-based learning algorithm called HyperGene to
integrate microarray gene expressions and protein-protein
interactions for cancer outcome prediction and biomarker
identification. HyperGene is a robust two-step iterative
method that alternatively finds the optimal outcome predic-
tion and the optimal weighting of the marker genes guided
by a protein-protein interaction network. Under the hypoth-
esis that cancer-related genes tend to interact with each
other, the HyperGene algorithm uses a protein-protein in-
teraction network as prior knowledge by imposing a con-
sistent weighting of interacting genes. Our experimental
results on two large-scale breast cancer gene expression
datasets show that HyperGene utilizing a curated protein-
protein interaction network achieves significantly improved
cancer outcome prediction. Moreover, HyperGene can
also retrieve many known cancer genes as highly weighted
marker genes.

1. Introduction

Finding gene predictors of cancer outcome from ge-
nomic data is becoming an increasingly important focus in
cancer research under the assumption that the genomic in-
formation can shed light on the molecular mechanisms un-
derlying cancer development and progression. In the past
decade, enormous amount of large-scale microarray gene
expression profiles have been produced to study different
cancers such as breast cancer [18, 19], lung cancer [16] and

�The first two authors contributed equally to this work.
†Author to whom correspondence should be addressed

prostate cancer [7] for the purposes of 1) detecting marker
genes for cancer-relevant phenotypes and 2) building reli-
able predictive models for cancer prognosis or diagnosis.
The two tasks are closely intervened with each other be-
cause on one hand, a predictive model built from highly
predictive marker genes is often more accurate in outcome
prediction; on the other hand, a highly accurate predic-
tion model can also be analyzed to reveal unknown cancer
marker genes. Different machine learning and data mining
strategies for feature selection have been applied to iden-
tifying a subset of genes that can maximize the prediction
performance of a classifier [18].

Although many interesting and promising findings have
been reported in these studies, the reliabilities of the studies
have been questioned with the concern on the unstable and
inconsistent results in cross-validations and cross-platform
comparisons due to the relatively small sample sizes in the
studies [6]. To overcome this difficulty, it has been pro-
posed to include other complementary genomic informa-
tion such as pathway information or functional annotations
to aid the process of model building and biomarker discov-
ery such that the prior knowledge from the complementary
data can improve the robustness of the model and result
in more consistent discoveries across independent datasets
[4, 3, 13]. The availability of large protein-protein inter-
action networks, which contain information on gene func-
tions, pathways and modularity of gene regulations, pro-
vides a desirable source of data for this purpose. Protein-
protein interactions can be derived from a number of ex-
perimental techniques such as yeast two-hybrid system and
mass spectrometry [11]. The high consistency between the
networks derived from different organisms allows integra-
tion of many small networks into a large scale network. It
has been observed that cancer genes tend to be highly con-
nected with each other in large scale protein-protein inter-
action networks [3]. It has been shown in [4] that by incor-
porating protein-protein interaction network into the model
built from microarray gene expressions, the authors can im-
prove cancer outcome prediction and get more reproducible

2008 Eighth IEEE International Conference on Data Mining

15504786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.37

293

2008 Eighth IEEE International Conference on Data Mining

15504786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.37

293

Learning on Weighted Hypergraphs to Integrate Protein Interactions and Gene
Expressions for Cancer Outcome Prediction

TaeHyun Hwang�, Ze Tian�, and Rui Kuang†

Department of Computer Science and Engineering
University of Minnesota Twin Cities
thwang, tianze, kuang@cs.umn.edu

Jean-Pierre Kocher
Bioinformatics Core

Mayo Clinic College of Medicine
Kocher.JeanPierre@mayo.edu

Abstract

Building reliable predictive models from multiple com-
plementary genomic data for cancer study is a crucial
step towards successful cancer treatment and a full under-
standing of the underlying biological principles. To tackle
this challenging data integration problem, we propose a
hypergraph-based learning algorithm called HyperGene to
integrate microarray gene expressions and protein-protein
interactions for cancer outcome prediction and biomarker
identification. HyperGene is a robust two-step iterative
method that alternatively finds the optimal outcome predic-
tion and the optimal weighting of the marker genes guided
by a protein-protein interaction network. Under the hypoth-
esis that cancer-related genes tend to interact with each
other, the HyperGene algorithm uses a protein-protein in-
teraction network as prior knowledge by imposing a con-
sistent weighting of interacting genes. Our experimental
results on two large-scale breast cancer gene expression
datasets show that HyperGene utilizing a curated protein-
protein interaction network achieves significantly improved
cancer outcome prediction. Moreover, HyperGene can
also retrieve many known cancer genes as highly weighted
marker genes.

1. Introduction

Finding gene predictors of cancer outcome from ge-
nomic data is becoming an increasingly important focus in
cancer research under the assumption that the genomic in-
formation can shed light on the molecular mechanisms un-
derlying cancer development and progression. In the past
decade, enormous amount of large-scale microarray gene
expression profiles have been produced to study different
cancers such as breast cancer [18, 19], lung cancer [16] and

�The first two authors contributed equally to this work.
†Author to whom correspondence should be addressed

prostate cancer [7] for the purposes of 1) detecting marker
genes for cancer-relevant phenotypes and 2) building reli-
able predictive models for cancer prognosis or diagnosis.
The two tasks are closely intervened with each other be-
cause on one hand, a predictive model built from highly
predictive marker genes is often more accurate in outcome
prediction; on the other hand, a highly accurate predic-
tion model can also be analyzed to reveal unknown cancer
marker genes. Different machine learning and data mining
strategies for feature selection have been applied to iden-
tifying a subset of genes that can maximize the prediction
performance of a classifier [18].

Although many interesting and promising findings have
been reported in these studies, the reliabilities of the studies
have been questioned with the concern on the unstable and
inconsistent results in cross-validations and cross-platform
comparisons due to the relatively small sample sizes in the
studies [6]. To overcome this difficulty, it has been pro-
posed to include other complementary genomic informa-
tion such as pathway information or functional annotations
to aid the process of model building and biomarker discov-
ery such that the prior knowledge from the complementary
data can improve the robustness of the model and result
in more consistent discoveries across independent datasets
[4, 3, 13]. The availability of large protein-protein inter-
action networks, which contain information on gene func-
tions, pathways and modularity of gene regulations, pro-
vides a desirable source of data for this purpose. Protein-
protein interactions can be derived from a number of ex-
perimental techniques such as yeast two-hybrid system and
mass spectrometry [11]. The high consistency between the
networks derived from different organisms allows integra-
tion of many small networks into a large scale network. It
has been observed that cancer genes tend to be highly con-
nected with each other in large scale protein-protein inter-
action networks [3]. It has been shown in [4] that by incor-
porating protein-protein interaction network into the model
built from microarray gene expressions, the authors can im-
prove cancer outcome prediction and get more reproducible

2008 Eighth IEEE International Conference on Data Mining

15504786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.37

293

2008 Eighth IEEE International Conference on Data Mining

15504786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.37

293

Gene expression/Copy Number protein-protein interaction networks

• Subnetwork marker

• Cancer outcome 
prediction

*Joint work with Mayo Clinic
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Hypergraph vs. normal graph
Sample Disese status Gene1 (up) Gene2 (up) Gene1 (down) Gene2 (down)

Patient1 Cancer 1 0 0 0

Patient2 Cancer 1 0 0 0

Patient3 Cancer 1 1 0 0

Patient4 Normal 0 0 0 1

Patient5 Normal 0 0 0 1

Patient6 ? 0 0 0 1
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Regularization framework
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f ,w

Φ( f ,w) =Ω( f ,w) + µ || f − y ||2 +ρΨ(w)
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protein-protein interaction

T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009 



Working example
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gene 3 (up): w = 1
gene1
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hypergraph

protein interaction network

• Q: Classify patient 6, and identify biomarkers (two step iterative method)

*Gene 3 is not differentially expressed 
but gene 3 play an important role in PPI 
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Working example
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protein interaction network

• Q: Classify patient 6, and identify biomarkers (two step iterative method)

1. Sample classification: (initial weights of genes are uniform)

a) Highly connected samples should have same label 

b) The prediction should be consistent with initial labeling
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Working example
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• Q: Classify patient 6, and identify biomarkers (two step iterative method)

1. Sample classification 

2. Learning weights of hyperedges

a) Fix current label information, and learn weights of hyperedges

...



Working example
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• Q: Classify patient 6, and identify biomarkers (two step iterative method)

1. Sample classification 

2. Learning weights of hyperedges

a) Fix current label information, and learn weights of hyperedges

b) Genes that interact with each other in should have similar weights

The weight of gene 3 is smaller than those of other genes

...



Working example
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• Q: Classify patient 6, and identify biomarkers (two step iterative method)

1. Sample classification 

2. Learning weights of hyperedges

a) Fix current label information, and learn weights of hyperedges

b) Genes that interact with each other in should have similar weights

By exploring the modular structure, our method assigns 
higher weights to gene 3
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Working example
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Working example
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3. Repeat step 1 and 2 until stopping criteria satisfies

4. Rank hyperedges based on their weights: Highly ranked hyperedges can 
be potential biomarkers



Experiments 1
• Baselines

• Support Vector Machines (SVMs) 
with linear and RBF kernels

• Rapaport et al, BMC bioinformatics 
2007

• Li and Li, Bioinformatics 2008

• Hypergraph

• HyperPrior-LP 

• HyperPrior-NB

*The classification performance of all methods are evaluated using area under the receiver operating 
characteristics (ROC) score.

• Task
• Cancer outcome prediction + 

Biomarker identification

• Dataset (Gene expression)

• Two groups (metastasis vs non-
metastasis)

1. van’t Veer et al, Nature 2002

• 78 samples + 19 samples

2. van de Vijver et al, New Engl. J. 
Med 2002

• 295 samples (5 folds cross 
validation)

3. Protein interaction networks

T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009 



Classification results
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Table 1. Classification performance on arrayCGH data

LOO errors SVM (linear) SVM (RBF) L1-SVM Fused SVM Hypergraph HyperPrior-LP HyperPrior-NB

Bladder tumors (by grade) 9 9 12 7 11 6 6
Bladder tumors (by stage) 9 9 13 7 9 5 6
Melanoma tumors 10 10 8 7 7 7 7

This table shows the number of misclassified samples in the LOO cross-validation on the bladder cancer dataset with two different labeling schemes (by tumor grade or by cancer
stage) and the melanoma cancer dataset.

We analyzed the genes located in the highly weighted
chromosome regions with Ingenuity (http://www.ingenuity.com/) to
check whether the genes involve over-represented GO categories
and biological pathways relevant to bladder cancer and melanoma
cancer. We selected the chromosome regions associated with the
top-20 highly weighted amplification states and the top-20 deletion
states on both datasets. On the bladder cancer dataset, 130 genes are
located in the amplification regions and 255 genes in the deletion
regions. On the melanoma cancer dataset, 205 genes are located
in the amplification regions and 28 genes in deletion regions.
Using these genes as input, Ingenuity identified 6 and 10 enriched
functions scoring a P < 0.0005 on the two datasets, respectively
(Supplementary Fig. 4). The enriched functions of bladder cancer
include post-translation modification, antigen presentation and
cellular movement, which are all consistent with those identified by
Konstantinopoulos et al. (2007); Saban et al. (2007) and Smith et al.
(2009). The enriched functions of melanoma cancer also include
known gene functions related to cancer development such as cell
cycle, cellular growth and proliferation, cellular development, and
cell morphology (Hanahan and Weinberg, 2000; Onken et al., 2006).

4.3 Classification of gene expressions
We then evaluated HyperPrior on two breast cancer gene expression
datasets, the van’t Veer et al. (2002) dataset with 97 samples
and the van de Vijver et al. dataset with 295 samples (van
de Vijver et al., 2002). A large curated human protein–protein
interaction network was used as prior knowledge (Chuang et al.,
2007). This network contains 57 235 interactions integrated from
yeast two-hybrid experiments, predicted interactions from orthology
and co-citation, and other literature reviews. The details of the
quantization and normalization of the datasets are described in
the original papers. The classification task is to classify patients
who developed metastasis or were free of metastasis in 5 years
after prognosis. As suggested by van’t Veer et al. (2002), 231
genes were selected on a training set of 78 patients and the
remaining 19 patients were held out as the test set in the van ’t
Veer et al. dataset. A LOO cross-validation was then applied to
the 78-patients training dataset to select parameters for classifying
the 19-patients test dataset. The detailed results of cross-validation
are given in Supplementary Tables 1–4. In the experiments on
the van de Vijver et al. dataset, we used for classification two
subsets of hypothetical cancer susceptibility genes: 326 genes
from Ingenuity and 1464 genes from Sloan Kettering cancer gene
list (http://cbio.mskcc.org/CancerGenes/). We randomly run 5-fold
cross-validation multiple times on the van de Vijver et al. dataset and
measured the average AUC. Note that within each experiment of a
5-fold cross-validation, another 4-fold cross-validation was applied

Table 2. Classification results on gene expression data

van ’t Veer et al. van de Vijver et al.

Algorithms 231 genes 326 genes 1464 genes

SVM (linear) 0.857 0.676 0.671
SVM (RBF) 0.857 0.681 0.667
Rapaport et al. 0.869 0.682 0.665
Li and Li 0.833 0.695 0.657
Hypergraph 0.857 0.687 0.685
HyperPrior-LP 0.881 0.697 0.692
HyperPrior-NB 0.869 0.697 0.692

On the van ’t Veer et al. dataset, the AUC on the 19-patient test set is reported. On the
van de Vijver et al. dataset, over the random 5-fold cross-validations (50 times on both
the 326 genes and the 1464 genes), the mean AUCs are reported.

on the training set to determine the best parameters for HyperPrior
and the baseline algorithms to test the held-out set.

The classification results in Table 2 show that both HyperPrior-
LP and HyperPrior-NB performed better than SVMs and the method
by Rapaport et al. (2007) in all the experiments. On both datasets,
HyperPrior achieved ∼2% improvement on the average AUCs.
Although this improvement seems marginal, pairwise comparisons
show that HyperPrior outperformed SVMs and the method by
Rapaport et al. (2007) significantly with P < 0.05 by one-sample
t-test (Supplementary Tables 5 and 6). The method by Li and Li
(2008) performed similarly as HyperPrior (0.695 versus 0.697) in
the experiments with 326 genes on the van de Vijver et al. dataset,
but this method did not perform well in the other two experiments.
The hypergraph-based algorithm achieved slightly worse results
compared with HyperPrior in the experiments with 1464 genes on
the van de Vijer et al. dataset, but in the other experiments, the
results were statistically worse.

To demonstrate that HyperPrior is capable of identifying true
cancer susceptibility genes, we compared the highly weighted genes
by HyperPrior on the van de Vijver et al. dataset with known
breast cancer causative genes reported in the overview section
of breast cancer (MIM 114480) in Online Mendelian Inheritance
in Man (May 2007; http://www.ncbi.nlm.nih.gov/omim/). While
correlation coefficients gave very low rankings to the 16 known
breast cancer causative genes in the dataset, HyperPrior-LP in two
different settings (ρ = 1 and 0.1) assigned high ranks to most of
the genes, with 14 out of 16 genes ranked in the top 300 genes
(Supplementary Table 7). Notable examples of the biomarker genes
are tumor protein p53 (TP53), estrogen receptor 1 (ESR1), v-Ha-ras
Harvey rat sarcoma viral oncogene homolog (HRAS) and v-Ki-ras2
Kirsten rat sarcoma viral oncogene homolog (KRAS).
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*231 genes reported in van’t Veer et al. are used.
*326 and 1,464 cancer related genes collected from Ingenuity and Memorial Sloan 
Kettering Cancer Gene lists are used in the second experiments

T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009 



Subnetwork identification

TP53 subnetwork STAT1 subnetwork BRCA1 subnetwork

ESR1

TP53

STAT1
EGFR

SRC BRCA1

CREBBP
MDM2

ATM

• Data integration can help to identify breast cancer-
related subnetworks

T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009 



Biomarker discovery
T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009 

The ranking of known breast cancer (OMIM#114480) 
susceptibility genes



Experiments 2
• Baselines

• Support Vector Machines (SVMs) 
with linear and RBF kernels

• L1-Support Vector Machines 
(SVMs)

• Rapaport et al, bioinformatics 
2008 (Fused-SVM)

• Hypergraph

• HyperPrior-LP 

• HyperPrior-NB

*The classification performance of all methods are evaluated using area under the receiver operating 
characteristics (ROC) score.

• Task
• Cancer outcome prediction + 

Biomarker identification

• Dataset (Copy number)

• Two groups (by grade, stage, and 
metastasis)

1. bladder tumor

• 12 grade1 vs 45 grade 2&3

• 16 stage T1 vs 32 stage T2+

2. melanoma tumor

• 35 metastasis vs 43 no-
metastasis

T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009 



Classification results

Our methods achieved overall best performances!
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Table 1. Classification performance on arrayCGH data

LOO errors SVM (linear) SVM (RBF) L1-SVM Fused SVM Hypergraph HyperPrior-LP HyperPrior-NB

Bladder tumors (by grade) 9 9 12 7 11 6 6
Bladder tumors (by stage) 9 9 13 7 9 5 6
Melanoma tumors 10 10 8 7 7 7 7

This table shows the number of misclassified samples in the LOO cross-validation on the bladder cancer dataset with two different labeling schemes (by tumor grade or by cancer
stage) and the melanoma cancer dataset.

We analyzed the genes located in the highly weighted
chromosome regions with Ingenuity (http://www.ingenuity.com/) to
check whether the genes involve over-represented GO categories
and biological pathways relevant to bladder cancer and melanoma
cancer. We selected the chromosome regions associated with the
top-20 highly weighted amplification states and the top-20 deletion
states on both datasets. On the bladder cancer dataset, 130 genes are
located in the amplification regions and 255 genes in the deletion
regions. On the melanoma cancer dataset, 205 genes are located
in the amplification regions and 28 genes in deletion regions.
Using these genes as input, Ingenuity identified 6 and 10 enriched
functions scoring a P < 0.0005 on the two datasets, respectively
(Supplementary Fig. 4). The enriched functions of bladder cancer
include post-translation modification, antigen presentation and
cellular movement, which are all consistent with those identified by
Konstantinopoulos et al. (2007); Saban et al. (2007) and Smith et al.
(2009). The enriched functions of melanoma cancer also include
known gene functions related to cancer development such as cell
cycle, cellular growth and proliferation, cellular development, and
cell morphology (Hanahan and Weinberg, 2000; Onken et al., 2006).

4.3 Classification of gene expressions
We then evaluated HyperPrior on two breast cancer gene expression
datasets, the van’t Veer et al. (2002) dataset with 97 samples
and the van de Vijver et al. dataset with 295 samples (van
de Vijver et al., 2002). A large curated human protein–protein
interaction network was used as prior knowledge (Chuang et al.,
2007). This network contains 57 235 interactions integrated from
yeast two-hybrid experiments, predicted interactions from orthology
and co-citation, and other literature reviews. The details of the
quantization and normalization of the datasets are described in
the original papers. The classification task is to classify patients
who developed metastasis or were free of metastasis in 5 years
after prognosis. As suggested by van’t Veer et al. (2002), 231
genes were selected on a training set of 78 patients and the
remaining 19 patients were held out as the test set in the van ’t
Veer et al. dataset. A LOO cross-validation was then applied to
the 78-patients training dataset to select parameters for classifying
the 19-patients test dataset. The detailed results of cross-validation
are given in Supplementary Tables 1–4. In the experiments on
the van de Vijver et al. dataset, we used for classification two
subsets of hypothetical cancer susceptibility genes: 326 genes
from Ingenuity and 1464 genes from Sloan Kettering cancer gene
list (http://cbio.mskcc.org/CancerGenes/). We randomly run 5-fold
cross-validation multiple times on the van de Vijver et al. dataset and
measured the average AUC. Note that within each experiment of a
5-fold cross-validation, another 4-fold cross-validation was applied

Table 2. Classification results on gene expression data

van ’t Veer et al. van de Vijver et al.

Algorithms 231 genes 326 genes 1464 genes

SVM (linear) 0.857 0.676 0.671
SVM (RBF) 0.857 0.681 0.667
Rapaport et al. 0.869 0.682 0.665
Li and Li 0.833 0.695 0.657
Hypergraph 0.857 0.687 0.685
HyperPrior-LP 0.881 0.697 0.692
HyperPrior-NB 0.869 0.697 0.692

On the van ’t Veer et al. dataset, the AUC on the 19-patient test set is reported. On the
van de Vijver et al. dataset, over the random 5-fold cross-validations (50 times on both
the 326 genes and the 1464 genes), the mean AUCs are reported.

on the training set to determine the best parameters for HyperPrior
and the baseline algorithms to test the held-out set.

The classification results in Table 2 show that both HyperPrior-
LP and HyperPrior-NB performed better than SVMs and the method
by Rapaport et al. (2007) in all the experiments. On both datasets,
HyperPrior achieved ∼2% improvement on the average AUCs.
Although this improvement seems marginal, pairwise comparisons
show that HyperPrior outperformed SVMs and the method by
Rapaport et al. (2007) significantly with P < 0.05 by one-sample
t-test (Supplementary Tables 5 and 6). The method by Li and Li
(2008) performed similarly as HyperPrior (0.695 versus 0.697) in
the experiments with 326 genes on the van de Vijver et al. dataset,
but this method did not perform well in the other two experiments.
The hypergraph-based algorithm achieved slightly worse results
compared with HyperPrior in the experiments with 1464 genes on
the van de Vijer et al. dataset, but in the other experiments, the
results were statistically worse.

To demonstrate that HyperPrior is capable of identifying true
cancer susceptibility genes, we compared the highly weighted genes
by HyperPrior on the van de Vijver et al. dataset with known
breast cancer causative genes reported in the overview section
of breast cancer (MIM 114480) in Online Mendelian Inheritance
in Man (May 2007; http://www.ncbi.nlm.nih.gov/omim/). While
correlation coefficients gave very low rankings to the 16 known
breast cancer causative genes in the dataset, HyperPrior-LP in two
different settings (ρ = 1 and 0.1) assigned high ranks to most of
the genes, with 14 out of 16 genes ranked in the top 300 genes
(Supplementary Table 7). Notable examples of the biomarker genes
are tumor protein p53 (TP53), estrogen receptor 1 (ESR1), v-Ha-ras
Harvey rat sarcoma viral oncogene homolog (HRAS) and v-Ki-ras2
Kirsten rat sarcoma viral oncogene homolog (KRAS).
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Hypergraph-based learning with prior knowledge

3 FUNCTIONAL ANALYSIS OF DISCRIMINATIVE CHROMOSOMAL REGIONS

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 1819202122

spot locations

w
e

ig
h

ts

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 1819202122

spot locations

w
e

ig
h

ts

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 141516 17 1819202122

spot locations

w
e
ig

h
ts

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 141516 17 1819202122

spot locations

w
e
ig

h
ts

weights of DNA amplifications weights of DNA deletions weights of DNA amplifications weights of DNA deletions
(A) Bladder cancer (B) Melanoma cancer

Fig. 3. Discriminative regions of DNA amplification and deletion. The figures plot separately the weights of regions of “amplification state” and “deletion
state”, assigned by HyperPrior with the � and ⇥ parameters giving the best results in cross-validation for the grade classification on bladder tumor samples
and melanoma tumor samples. The spots are ordered by their locations on chromosomes and the corresponding weights are plotted in blue curves. Red lines
represent the chromosome separations.

For the two arrayCGH datasets, the weights of spots assigned by HyperPrior are plotted in Fig. 3. We analyze with Ingenuity (http:
//www.ingenuity.com/) the biological functions of the genes located in the highly weighted chromosome regions to check whether
the genes involve over-represented GO categories and biological pathways that are related to bladder cancer and melanoma cancer. We select
the chromosome regions associated with the top 20 highly weighted amplification states and the top 20 deletion states on both datasets. Inside
these chromosome regions, 130 genes are found in the amplification regions and 255 genes are found in the deletion regions of the bladder
cancer dataset, while on the melanoma cancer dataset, 205 genes are found in the amplification regions and 28 genes are found in the deletion
regions . Using these genes as input, Ingenuity identifies 6 and 10 enriched functions scoring a p-value less than 0.0005 on the bladder and
melanoma cancer datasets, respectively. The enriched functions on the bladder cancer dataset include post-translation modification, antigen
presentation and cellular movement, which are all consistent with those identified by Saban et al. (2007); Konstantinopoulos et al. (2007);
Smith et al. (2009). The enriched functions on the melanoma cancer dataset also include known gene functions related to cancer development
such as cell cycle, cellular growth and proliferation, cellular development, and cell morphology (Hanahan and Weinberg, 2000; Onken et al.,
2006).

(A) Bladder cancer (B) Melanoma cancer

Fig. 4. Enriched biological functions in discriminative chromosomal regions.

4 CANCER GENE RANKING
We ranked the 1,464 cancer genes on van de Vijver et al. dataset and compare the ranking of known breast cancer genes with the ranking by
correlation coefficients.

We also introduced some noise to the PPI network to make the degree of each node no less than one half of the maximum degree in the
network. The top 100 genes ranked by HyperPrior with two groups of parameters and with a PPI to which the noise is introduced are listed
in the following table:

5

Our methods found cancer-related copy number regions! 

significantly amplified and deleted regions

T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009 



Take home message

TP53 subnetwork STAT1 subnetwork BRCA1 subnetwork
SRC BRCA1

ATM

T. Hwang et. al, ICDM 2008
Z. Tian, T. Hwang, R. Kuang, Bioinformatics 2009 

•T. Hwang*, Z. Tian*, JP Kocher, R. Kuang, “Learning on Weighted Hypergraphs for 
Integrating Protein Interactions and Gene Expressions”, IEEE International Conference on 
Data Mining, ICDM 2008
•Z. Tian*, T. Hwang*, and R. Kuang. “A Hypergraph-based Learning Algorithm for Classifying 
Gene Expression and arrayCGH  data with Prior Knowledge”, Bioinformatics 2009
•Z. Tian*, T. Hwang*, and R. Kuang. “A Hypergraph-based Learning Algorithm for Classifying  
arrayCGH data with Spatial Prior Knowledge”, Proc. of IEEE International Workshop on 
Genomic Signaling Processing and Statistics, GENSIPS 2009
*Joint first author

• Our proposed method that integrates genomic data with biological 
prior knowledge can help to improve cancer outcome prediction and 
discover cancer-related subnetworks in breast cancer

• Our proposed method also found cancer-related copy number 
variations with aCGH data experiments in melanoma and bladder 
cancer

• One should be careful to interpret results from network-based 
methods



Network/pathway based methods for patient 
stratification



Motivation
• Somatic mutation, and copy number alternations (CNAs) at the 

distinct loci of the human genome may contribute to the development 
of cancers 

• The systematic characterization of disrupted pathways by genomic 
alterations in human cancer  can help to establish the refined genetic 
landscape of cancer

- why pathway?

16 

Ovarian: IPLs statify by survival time 
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 represented as either the level in a related normal tissue, or the 
median level across the entire cohort. Each factor in the model 
is a conditional probabilistic table (CPT): for every variable X in 
the graph, a factor is added that represents P(X | Parents(X)), 
where the Parents(X) is the set of all variables that are the start 
of a directed edge to X. For complexes, this CPT acts as a min() 
function, as all constituents of a complex are required. For mole-
cule families, the CPT is a max() function, as any of the members 
of the family are sufficient for function. Evidence nodes such as a 
microarray observation of gene expression or copy number, are 
attached to the graph by a directed edge from the source molec-
ular state to an evidence node.

LEARNING
The model is fit by expectation-maximization across all samples. 
During the E-step, the expectations of hidden nodes are calculat-
ed for each sample separately. During the M-step, parameters for 
the same sets of variables are shared across variables. 
Additionally, parameters are shared for each dogma factor 
between genes, and parameters are shared between factors for 
the same evidence source.

INTEGRATED PATHWAY LEVELS
For each sample and for each gene, complex, or other pathway 
components, a single summary is calculated, called the 
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[FIG7] The Paradigm model was  meant to integrate many types of functional genomic information with a pathway structure. Multiple 
information states of each gene are modeled via a probabilistic graphical model representation of the central dogma of molecular 
biology. Interactions between genes, complexes, and small molecules are modeled with factors that connect separate gene dogmas. 
Each factor describes the relationship between connected variables, with the arrow indicating the directionality of the conditional 
probability table. (a) The simplest dogma, used for aCGH and transcriptomic data. (b) A more complex dogma that includes 
methylation information.

• Given: genomic data (e.g., mutation, copy number, gene 
expression and etc), and pathway
• Task: Identify pathway activity of patient

• Input: genomic data and pathway
• Output: pathway activity (e.g., active or inactive) 
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corresponding to the hierarchical 
clustering analysis and Figure 
11(b) shows the Kaplan-Meijer 
curves for these clusters. We find 
that patients with lower IPLs in 
the genes associated with the 
E-cadherins adherens junction 
pathway have a better response to platinum therapy ( p 5 0.003). 
E-cadherin has been rather controversial as a prognostic factor in 
serous ovarian cancer with some studies identifying it as being 
only marginally associated with prognosis [37], while other stud-
ies pointing to a deeper role suggestive of a novel subtype of 
serous ovarian carcinoma harboring a mesenchymal phenotype 
[38]. This particular subtype of serous ovarian carcinoma was 
associated with slightly improved relapse-free survival, which 
would correspond to our finding of slightly better response to 
platinum therapy. 

These results suggest that a pathway-level framework is likely 
to provide deeper insight on mechanisms underlying clinically 
relevant subtypes when compared to evaluating the expression 
levels of just one or more genes, even if they were chosen from 
within the same pathway. 

CONCLUSIONS
The realization that prior biological information needs to be 
incorporated in cancer genomics studies has led to a dramatic 
increase in the diversity of approaches being adopted in this 
field. Starting with the idea of functionally annotated sets of 
genes, researchers have already started to use more systemic 
views of biomolecular processes such as the regulatory logic of 
signaling pathways. 

Even within the relatively 
narrow field of pathway-based 
methods, there are wide differ-
ences in how current approaches 
incorporate existing biological 
knowledge in cancer genomics 
as highlighted in the three rep-

resentative approaches presented in this review. First of all, the 
methods differ in terms of the kinds of genomic measurements 
that they use as input in addition to the pathway models. 
Neither SPIA nor PathOlogist can include sources of informa-
tion other than gene expression levels, for example gene copy 
number information. Paradigm is the only method that incor-
porates multiple genomics information streams such as expres-
sion, copy number, and proteomics data in addition to pathway 
information to infer the functional activity levels of genes. 
Second, the methods also differ in terms of the goals of their 
analyses. Both PathOlogist and Paradigm attempt to infer the 
functional activity of genes—PathOlogist directly estimates the 
probability of genes being in functionally active states using 
gene expression data alone, whereas Paradigm estimates gene 
activity by modeling interactions within genomic data types 
and within genes in the pathway. SPIA, on the other hand, is 
not at all concerned with functional activity levels of genes, and 
instead bases its perturbation analysis directly on differential 
expression values and calculates the impact of a gene’s expres-
sion changes on the pathway. 

 It is noteworthy that the approaches reviewed here focus on 
limited aspects of the overall problem of modeling the cancer 
cell as a system involving multiple processes distributed over 
many genes and pathways. PathOlogist, for example, just averag-
es results over all individual interactions in a given pathway and 

[FIG11] Clustering analysis of ovarian samples using Paradigm shows that patients with lower IPAs for genes in the E-cadherin 
adherens junction pathway are associated with better response to platinum therapy (p 5 0.003).
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THE KEY FOCUS OF THIS FIELD IS TO 
IDENTIFY A UNITARY FRAMEWORK THAT 

CAN MODEL THE MOLECULAR AND 
PHYSIOLOGICAL PROCESSES UNDERLYING 
CANCER ETIOLOGY AND PROGRESSION.

• Pathway activities could be used to identify patient subgroups 
having different survival outcome
• Pathway activities could guide a clinical decision for efficient 
therapy
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PARADIGM 
• Pathway activities could be used to identify patient subgroups 
having different survival outcome
• Pathway activities could guide a clinical decision for efficient 
therapy
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Limitation
- rely on existing pathway database

- current knowledge of pathway is still incomplete (~4000 genes 
annotated with current existing pathway database)

- need to use independent algorithms to cluster patient samples
- step 1) identify pathway activities 
- step 2) use pathway activities to discover patient subgroups



HotNet
• Given: genomic data (e.g., mutation, or copy number), and 
protein-protein interaction networks
• Task: Identify significantly mutated subnetworks 

• Input: genomic data and protein interaction networks
• Output: subnetworkHotNet: Problem Definition 

Given:  

1. Network G = (V, E) 

  V = genes.  E = interactions b/w genes 

2. Binary mutation matrix 

  

 

 

 

Find: Connected subnetworks mutated in a 
significant number of patients 

–   mutated !"#$%&!'"&#!(#)#*#+'"'#,-&%&'.#!"#$%&!'"& 

P
a
ti
e
n
ts
 

Genes 

= not mutated 

= mutated 

slide courtesy of Dr. Ben Raphael



HotNet
Human Interaction Network 

= mutated genes 
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Mutated subnetworks: HotNet* 

Mutation !  heat diffusion   

Hot 

Cold 

*F. Vandin, E. Upfal, and B. J. Raphael.  J. Comp.Biol. (2011).  Also RECOMB (2010). 

(1) 

(2) 

Extract “significantly hot” subnetworks 
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• Workflow



HotNet

slide courtesy of Dr. Ben Raphael

• Results

Ovarian Subnetworks 

Kegg Pathway 

Notch signaling (p < 6x10‐7) 

TCGA.  Nature (2011) 

12/27 subnetworks significantly overlap known 

pathways (KEGG) or protein complexes (PINdb) 
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• Results

Ovarian Subnetworks 

Kegg Pathway 

Notch signaling (p < 6x10‐7) 

TCGA.  Nature (2011) 

12/27 subnetworks significantly overlap known 

pathways (KEGG) or protein complexes (PINdb) 

Limitation
- assume that gene-gene interaction networks are sparse

- could not be applicable large functional linkage network
- could not incorporate existing biological prior knowledge

- no data integration with pathway or other biological knowledge
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Ciriello et. al., “Mutual exclusivity analysis identifies oncogenic network modules”, Genome research 2012

homozygous deletion of TP53 or p16/ARF (CDKN2A), or amplifi-
cation of MDM2/MDM4 (The Cancer Genome Atlas Research
Network 2008). This and other examples from recent sequencing
studies have provided increased evidence that cancer genes tend to
cluster within a limited set of essential biological pathways, and that
diversity and complexity at the gene level can be substantially re-
duced at the pathway level (Velculescu 2008; Stratton et al. 2009).

Second, many tumor profiling projects have observed mutu-
ally exclusive genomic alterations across many patients—for ex-
ample, TP53 is mutated and MDM2 is copy number amplified, but
only very few patients harbor both genetic lesions (The Cancer
Genome Atlas Research Network 2008). Additional examples in
other cancer types include mutual exclusivity between APC and
CTNNB1 mutations (both involved in the beta-catenin signaling
pathway) (Sparks et al. 1998), and BRAF and KRASmutations (both
involved in the commonRAS/RAF signaling pathway) in colorectal
cancer (Rajagopalan et al. 2002); and mutual exclusivity between
BRCA1/2 mutations and BRCA1 epigenetic silencing in serous
ovarian cancer (The Cancer Genome Atlas Research Network 2011).

As these diverse examples demonstrate, mutually exclusive
genomic events provide strong genetic evidence that the altered
genes are functionally linked in a common biological pathway. Al-
teration to these pathways enables tumors to bypass or activate
a specific set of cellular processes, also known as the hallmarks of
cancer (Hanahan and Weinberg 2000, 2011). Once a gene that is
involved in one of these processes is altered, the tumor cell acquires
a selective advantage, e.g., increased proliferation, which promotes
clonal expansion. Observations indicate that a second hit, leading
to the same downstream effect, is less likely to occur.

Two biologically plausible scenariosmay explain the resulting
pattern of mutually exclusive genomic alterations within a cancer
study. In the first scenario, alteration to a second gene within the
samepathway offers no further selective advantage. This hypothesis
would, for example, explain the observed mutual exclusivity be-
tween MDM2 amplification and TP53 inactivation in the p53 sig-
naling pathway in GBM: Once either of the two genes is altered,
the pathway is compromised and apoptosis evaded. Additional al-
terations to the pathway do not change the effect on the apoptosis
process and are not selected for.

In the second scenario, alteration to the second gene within
the same pathway actually leads to a disadvantage for the cell, in
the extreme case, to cell death. This scenario is referred to as syn-
thetic lethality.

As evidenced in the examples below, several of the networks
identified by MEMo show significant mutual exclusivity between
functionally redundant genomic alterations, butmultiple alterations
in the same tumor are also occasionally present. This evidence sup-
ports the first hypothesis as the more plausible of the scenarios, but
we cannot systematically distinguish between the two hypotheses
based on genomic data alone.

In either of the above scenarios, the observed mutual exclu-
sivity provides evidence that the altered genes are functionally
linked, and most likely linked in a common pathway or biological
process. These patterns have not been adequately exploited by al-
gorithms to automatically identify altered pathways in cancer.

Results

Overview of MEMo algorithm
The goal of MEMo is to identify sets of connected genes that are
recurrently altered, likely to belong to the same pathway or bi-
ological process, and exhibit patterns ofmutually exclusive genetic
alteration acrossmultiple patients. Modules that exhibit these three
properties are very likely to drive cancer progression, and we refer
to such modules as candidate ‘‘driver networks.’’ As outlined in
Figure 1, the algorithm proceeds in four steps.

Step 1: Build binary event matrix of significantly altered genes

In Step 1, the algorithm uses the full set of somatic mutations and
copy number events across all observed samples, applies multiple
gene filters for recurrence and concordant mRNA expression, and
generates a binary event matrix of all target genes in all samples.

Three gene filters are used, with the goal of identifying those
genes most likely involved in tumor initiation or progression. The
first filter identifies genes that are mutated significantly above the
backgroundmutation rate (BMR). Specifically, input is restricted to
significantly mutated genes, as determined by the Standard test of

Figure 1. Identifying mutual exclusivity modules (MEMo) in cancer. Overview of the algorithm.
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profiling, and mRNA expression data. This includes the 91 cases
originally analyzed in the 2008 TCGA paper (The Cancer Genome
Atlas Research Network 2008), plus 47 newly sequenced samples.
Ten significantly mutated genes and 158 ROI of amplification or
deletion were used as input. We analyzed GBM data using two
differentHRNs, and complete results are provided in Supplemental
Table 1 (Tabs 1 and 2). Very similarmodules were identified for both
networks, and here we describe in detail the results with HRN1,
while providing comments on modules found specifically with
HRN2. Below, P* indicates a P-value that has been adjusted for
multiple testing.

Within HRN1, eight modules with P* < 0.05 are identified.
The two highest scoring modules contain four genes in total: The
first includes CDKN2A, CDK4, and RB1, and the second CDKN2B,
CDK4, and RB1 (both have P* < 1.03 10!2) (Fig. 2A). The modules
are altered in 68% and 73% of cases, respectively, and all genes are
core members of the Rb pathway (Sherr and McCormick 2002).
Thesemodules recapitulate findings fromTCGA and earlier studies
that glioblastomas nearly universally circumvent cell cycle inhi-
bition through genetic alterations to the Rb pathway (Ohgaki and
Kleihues 2007; The CancerGenomeAtlas ResearchNetwork 2008).

Two other high-scoring modules include one involving
CDNK2A,MDM2, and TP53, and a second involving TP53,MDM2,
and MDM4 (Fig. 2B). The modules are altered in 75% and 48% of
patients, respectively. Because all genes in these two modules are

members of the p53 signaling pathway (Sherr and McCormick
2002), we merged them and tested the resulting set of four genes
for mutual exclusivity. The union of the two modules still shows
significant mutual exclusivity (P < 1.0 3 10!4).

The final pair of high-scoringmodules contains coremembers
of the RTK/RAS/PI(3)K signaling pathway. Specifically, onemodule
contains EGFR, PDGFRA, and PTEN (altered in 74% of cases) and
a secondmodule contains EGFR, PTEN, and PIK3R1 (altered in 73%
of cases). Similar to the p53 signaling case, we merged the two
modules and, again, the combined gene set shows alterations in
a statistically significant mutually exclusive pattern (P = 0.0018).
Major downstream effects of RTK/RAS/PI(3)K activation include
cell growth, proliferation, survival, and motility, all factors that
drive tumor progression, and these pathway components have all
been previously identified in glioblastoma (Ohgaki and Kleihues
2007; The Cancer Genome Atlas Research Network 2008).

Using HRN2, MEMo confirms the findings of HRN1, while
adding two new modules. First, it finds a module involving EGFR,
PDGFRA, and NF1 (P* < 1.0 3 10!2), thus correctly including NF1
in the set of alterations affecting RTK/RAS/PI(3)K signaling path-
way. Second, MEMo identifies as highly significant the triplet in-
cluding TP53, CDKN2A, and GLI1. This glioma-associated onco-
gene (GLI1) has been shown to repressTP53 activity by forming an
inhibitory loop (Stecca and i Altalba 2009), andwas not reported in
the original p53 pathway analysis reported by the TCGA project

Figure 2. Top-scoring modules in the TCGA GBM data set. The top-scoring mutually exclusive modules correspond closely to core signaling pathways
including Rb signaling (A), p53 signaling (B), and RTK/RAS/PI(3)K signaling (C ).
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the true factor matrices F0, S0 and G0 with m = 10,
n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.
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Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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Sparse Robust Matrix Tri-factorization with
Application to Cancer Genomics

Abstract—Nonnegative matrix tri-factorization (NMTF)
X � FSGT with all matrices nonnegative can reveal
simultaneous row and column clusters of X, as well as
the associations among the two. In this work, a sparsity-
promoting variant is proposed and a simple multiplicative
algorithm is developed. The resulting sparse NMTF is
further robustified to cope with presence of outliers in the
data. A synthetic example illustrates the efficacy of the
method. A novel application to cancer patient clustering
and pathway analysis is presented using real datasets.

I. INTRODUCTION

Matrix factorization is an important tool for feature
extraction and dimensionality reduction tasks with wide
range of applications in the areas including engineering,
psychometrics, marketing, and computational biology.
Using singular value decomposition (SVD), principal
component analysis (PCA) factorizes the underlying data
matrix under orthogonality constraints to uncover salient
uncorrelated variables influencing the data. The k-means
clustering may be viewed as matrix factorization under
the hard constraint that each data vector (matrix column)
is approximated by one of the cluster centroids [16].

When the data are nonnegative, it often makes sense to
require also the factors to be nonnegative. Nonnegative
matrix factorization (NMF) can help identify easily inter-
pretable parts that comprise the overall data, especially
when additive structures can be presumed. For instance,
in an article published in Nature in 1999, NMF applied
to facial images was shown to yield image segments
containing different parts of the face [12]. PCA-type
approaches might not be good candidates in such cases,
as the resulting factors are not guaranteed to be non-
negative. Moreover, strict orthogonality constraints may
prevent discovery of possibly overlapping structures that
can be naturally present in some datasets.

In its most primitive form, nonnegative matrix (bi-
)factorization seeks to obtain factors F ⌅ Rm�k

+ and
G ⌅ Rn�k

+ that approximate the data matrix X ⌅ Rm�n
+

such that X ⇤ FGT in some sense (e.g., minimizing
square-errors), as in

min
F⇥0,G⇥0

1

2
⌥X� FGT ⌥2F (1)

where F ⇥ 0 constrains each element of F to be
nonnegative. The (maximum) rank of the factors k is
usually chosen to be much smaller than min{m,n} to
effect dimensionality reduction.

It has been also argued that NMF can be viewed as co-
clustering of rows and columns of X, especially if F and
G have orthogonal columns [4]. In this interpretation,
the a-th row of F corresponds to the cluster membership
indicator for the a-th row of X; and at the same time,
the b-th row of G corresponds to the cluster membership
indicator for the b-th column of X. Application of NMF
for document co-clustering was reported in [17].

A number of algorithms have been developed for com-
puting nonnegative factors. The most well-known class
comprises the multiplicative update rules proposed in the
seminal work by Lee and Seung [13]. Gradient descent-
type algorithms have also been studied partly due to
the slow convergence of multiplicative updates. Alternat-
ing nonnegative least-squares approaches typically enjoy
theoretically well-grounded convergence properties [10].
Extensions have been made to incorporate various prior
knowledge on the structures of the factors, such as
smoothness and sparsity [8].

Nonnegative matrix tri-factorization (NMTF) aims to
approximate the data matrix X ⌅ Rm�n

+ using three fac-
tor matrices F ⌅ Rm�k1

+ , S ⌅ Rk1�k2
+ and G ⌅ Rn�k2

+

such that X ⇤ FSGT [5]. Essentially, the relevant
optimization problem is now given by (cf. (1))

min
F⇥0,S⇥0,G⇥0

1

2
⌥X� FSGT ⌥2F . (2)

To facilitate the clustering interpretation, F and G were
additionally constrained to be column-orthogonal in [5].

By having three factors instead of two, one can
gain a number of benefits. First, under orthogonality
constraints, bi-factorization may be too restrictive; an
additional factor S can furnish necessary degrees of
freedom to obtain “good” factorization [5]. Also, an
important flexibility is that the number k1 of the column
clusters can be different from the number k2 of the row
clusters. This is useful when the rows and the columns
correspond to different entities, say, documents and the
words contained in them, respectively. Finally, in some
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By having three factors instead of two, one can
gain a number of benefits. First, under orthogonality
constraints, bi-factorization may be too restrictive; an
additional factor S can furnish necessary degrees of
freedom to obtain “good” factorization [7]. Also, an
important benefit of tri-factorization is that it allows
the number k1 of the column clusters to be different
from the number k2 of the row clusters. This is useful
when the rows and the columns correspond to different
entities, say, documents and words contained in them,
respectively. Finally, in some applications, direct inter-
pretation of S is possible and meaningful. Specifically, S
can reveal how different row clusters are associated with
column clusters, providing a summary of the interaction
structure [12].

The goal of this work is to extend NMTF to incor-
porate sparsity and robustness. Sparsity constraints in
NMF were shown to yield more “local” features in an
instance of a facial images dataset in [11], which are
easier to interpret. Without promoting sparsity, NMF
sometimes converged to “global” image segments that
do not visually correspond to different parts of the face.
Also, along the arguments of variable selection applica-
tions, sparsity can help pick the most relevant variables,
which is instrumental when such analyses serve as a
preliminary step for more costly verification processes,
e.g., as in medicine. In the context of NMTF, enforcing
sparsity in the S factor in particular can provide a more
succinct characterization of association structures.

To address outliers that may be present in the data due
to, e.g., contaminated samples in biological experiments,
noisy measurements, and other types of errors, the uni-
versal sparsity-controlling outlier rejection (USPACOR)
framework is adopted in the context of NMTF [9]. By
capitalizing on typical sparsity of outliers, erroneous data
entries are effectively compensated to align with the
NMTF structure. Simple update rules to compute the
proposed NMTF are derived taking the multiplicative
update approach.

The rest of the paper is organized as follows. Sec. II
provides the problem formulation for sparse NMTF, and
develops a multiplicative update algorithm. Incorporation
of robustness is discussed in Sec. III. Tests using simple
synthetic data are described in Sec. IV. Preliminary
results based on real datasets in a novel bioinformatics
application are reported in Sec. V. Conclusions and
future directions are given in Sec. VI.

II. SPARSE NMTF
A. Problem Statement

To promote sparsity of the factors in NMTF, ap-
propriate penalty terms can be added to the objective

function of (2). Among widely-used sparsity-inducing
penalty is the one based on the ⇥1-norm, which is the best
convex relaxation of the cardinality, or the “⇥0-norm.” To
facilitate derivation of multiplicative update rules, as will
be detailed in Sec. II-B, squared ⇥1-norm penalties are
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Some authors advocated enforcing orthogonality of F
and G to strengthen clustering interpretation [7], as well
as to obtain more distinctive set of centroids [19]. On
the other hand, others argued that orthogonality fails to
capture natural semantic structures in some applications,
as it precludes overlapping (soft) clusters [18]. Here,
we do not enforce orthogonality to allow soft clusters.
However, it is noted that sparsity does not forestall
orthogonality; in fact, sparse nonnegative vectors are
more likely to be orthogonal. Our experience is that
orthogonal NMTF is less sensitive to initialization, and
that sparse NMTF initialized with orthogonal factors
often yields good results.

B. Algorithm

Many algorithms have been developed for NMF [2].
The most widely used are based on multiplicative update
rules [15]. Since (1) is nonconvex, alternating opti-
mization is used to obtain a locally optimal solution.
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Fig. 4. Kaplan-Meier survival plots.

A. Set-up

Microarray gene expression and copy number alter-
ation data for ovarian cancer patients were collected
from The Cancer Genome Project Atlas (TCGA) portal
(http://cancergenome.nih.gov). Both datasets contain 377
patients and 11,094 gene expression or copy number
alterations. Also collected were 186 KEGG pathways,
which contain 5,267 genes in total, from a molecular
signature database. The microarray gene expression and
copy number alteration data were transformed to nonneg-
ative input matrices X as follows [11]. The rows and the
columns of the original data matrix Y represent patients
and genes, respectively. For each nonnegative element
Yij ⇥ 0 in the original matrix Y, set Xi,2j�1 = Yij

and Xi,2j = 0. For each negative element Yij < 0, set
Xi,2j�1 = 0 and Xi,2j = �Yij . Thus, matrix factor F
indicates the patient clusters, where the number of pa-
tient clusters k1 is fixed to 20. To simplify interpretation,
factor G was fixed to the known gene pathways.

B. Results

First, we investigated whether subgroups of patients
that correlate with different clinical outcomes, such
as survival, could be identified. After learning patient
cluster F, the patients were divided into three groups by
examining each column of F. Specifically, the patients
were ranked based on the magnitude of the entries in
each column of F, and the top 120 patients out of 377
were collected in Group A, the bottom 120 in Group C,
and the rest in Group B. To find the subgroup of patients
that strongly correlate with survival outcomes, Kaplan-
Meier curves were generated by plotting the proportion

of surviving patients versus the number of months after
initial diagnosis.

Interestingly, patient clusters with statistically signifi-
cant difference in survival outcomes could be identified
from both microarray gene expression and copy number
alteration datasets. For example, it was found that Group
A patients had significantly less chance of survival
compared to Groups B and C in the 17th cluster (column
of F) from the microarray gene expression dataset, as
shown in Fig. 4(a). The logrank test indicates that Groups
A, B and C patients indeed have significantly different
survival outcomes with p-values less than 0.0069 (at
hazard ratio 1.2448). The median survival time for Group
A was 23.95 months, compared to 32 and 29.55 months
for Groups B and C. Similarly, the three patient groups
in the 12th cluster from the copy number dataset had
p-value less than 0.0167 with hazard ratio 1.2963, as
depicted in Fig. 4(b). The median survival times were
27.25, 22.80 and 33.05 months for Groups A, B, and C.

To identify the pathway activities associated with the
patient subpopulations with different survival outcomes,
different rows in S (i.e., pathway activities corresponding
to patient clusters) were examined. Specifically, the path-
ways were ranked based on the magnitudes of the entries
in each row of S. In the microarray gene expression
dataset, many cancer-related pathways were found to
be associated with the patient subgroups in the 17th
patient cluster, including ‘pathways in cancer,’ ‘mitogen-
activated protein kinase (MAPK) signaling pathway,’ and
‘transforming growth factor beta (TGF-beta) signaling
pathway.’ Deregulation of activities in MAPK and TGF-
beta signaling are known to be involved in many types
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TABLE II

TOP RANKED PATHWAY ACTIVITIES.

Ranking Pathway (Microarray gene expression) Pathway (Copy number alteration)

1 KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION KEGG PATHWAYS IN CANCER

2 KEGG COMPLEMENT AND COAGULATION CASCADES KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION

3 KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION KEGG RIBOSOME

4 KEGG CELL ADHESION MOLECULES CAMS KEGG CELL ADHESION MOLECULES CAMS

5 KEGG PATHWAYS IN CANCER KEGG UBIQUITIN MEDIATED PROTEOLYSIS

6 KEGG PURINE METABOLISM KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION

7 KEGG CHEMOKINE SIGNALING PATHWAY KEGG MAPK SIGNALING PATHWAY

8 KEGG HEMATOPOIETIC CELL LINEAGE KEGG WNT SIGNALING PATHWAY

9 KEGG MAPK SIGNALING PATHWAY KEGG HUNTINGTONS DISEASE

10 KEGG TGF BETA SIGNALING PATHWAY KEGG CHEMOKINE SIGNALING PATHWAY

of cancers including ovarian, breast, lung, prostate, and

renal cancers [3], [15].

Likewise, many cancer-related pathways popped up

in the top ranked pathways associated with patient sub-

groups in the 12th patient cluster in the copy number

alteration dataset. These included ‘pathways in cancer,’

‘MAPK signaling pathway,’ and ‘Wnt signaling path-

way.’ Alteration of Wnt signaling pathway have been

suggested to play a central role in ovarian tumorigene-

sis [6]. Moreover, recent studies showed that ‘cytokine

cytokine receptor interaction’ and ‘neuroactive ligand

receptor interaction’ pathways, which are highly ranked

in both microarray gene expression and copy number

alteration datasets, could play a major role in ovarian

tumorigenesis and survival [14], [2].

The list of top ranked pathway associated with patient

clusters are listed in Table II. These results suggest that

the proposed method can allow stratification of cancers

at the pathway level, potentially leading to development

of more targeted therapeutics.

VI. CONCLUSIONS

Sparsity-promoting NMTF was formulated and mul-

tiplicative rule-based algorithms were developed with

provisions to avoid non-stationary fixed points. Com-

pared to the NMTF under orthogonality constraints,

the proposed method was shown to be effective in

revealing overlapping clusters. A robust version was

also derived based on the inherent sparsity of outliers.

The outlier identification capability could determine the

data points that do not conform to the NMTF structure.

Novel application of the method to microarray gene

expression and copy number alteration data of cancer

patients showed promise in discovering relevant patient

subgroups and associated critical pathways, potentially

useful for targeted therapeutics.
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• TCGA Ovarian Carcinoma: 377 patients with clinical data 
• Gene Expression: 11,864 mRNA expression 
• Pathway: KEGG pathway (186 pathways)

✓ Matrix tri-factorization can accurately identify patient subgroups having 
different survival outcome and pathways associated with patient subgroups
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Experiments (TCGA)
• TCGA Ovarian Carcinoma: 377 patients with clinical data 
• Copy Number Alteration: 11,864 copy number changes 
• Pathway: KEGG pathway (186 pathways)

✓ Matrix tri-factorization can accurately identify patient subgroups having 
different survival outcome and pathways associated with patient subgroups
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(A) Microarray Gene Expression (B) Copy Number Alteration
Fig. 4. Kaplan-Meier survival plots for the clusters of patient subgroups from ovarian cancer microarray gene expression and copy
number alteration dataset This figure describes Kaplan-Meier survival analysis using signals in a column vector of F . The plots are from
17th and 12th clusters from microarray gene expression and copy number alteration datasets

(TCGA) data portal (http://cancergenome.nih.gov/). Both
dataset contains 377 patients and 11094 gene expression
and copy number alterations. We also collected 186
KEGG pathways, which contain 5267 genes in total,
from molecular signature database. We transform the
microarray gene expression and copy number alteration
data into non-negative matrices as suggested by [1].
For each element of the original matrix X(i, j) >= 0,
we set X ⇥(i, j) = X(i, j) and X(i, j + 1) = 0. For
each element X(i, j) < 0, we set X ⇥(i, j) = 0 and
X ⇥(i, j + 1) = �X(i, j). The transformed non-negative
matrices are our input.

2) Experiment setup: We denote microarray gene
expression or copy number dataset by a matrix Xm�n,
whose row and column represent patients and genes, and
pathway by a matrix Gn�k2 , whose row and column
represent genes and pathways, respectively. We denote
patient cluster by a matrix Fm�k1 , where k1 represents
a number of patient clusters, and patient cluster-pathway
association by a matrix Sk1�k2 . Note that we fix pathway
G, since updating G could make our analysis difficut.
We set a number of patient clusters k to 20, and the
parameters �F , �S , and �O to 0.0001, 0.0001, and 2 for
microarray gene expression data, and 0.001, 0.0001, and
2 for copy number alteration data.

3) Results: We first investigated whether we could
identify subgroups of patients that correlate with differ-
ent clinical outcomes such as survival. After learning pa-
tient cluster F , we divided the patients into three groups
by looking at their basis vectors in each column in the
matrix F . Specifically, we first ranked patients based on
corresponding basis, and set Group A with top ranked
120 out of the total 377 patients, and Group C with
bottom ranked 120 patients in each patient cluster. The
remaining patients are grouped as Group B. We expected

that for at least some of patient clusters in the matrix F ,
we could identify subgroups of patients that correlate
with different survival outcomes. To test our hypothesis
we generated Kaplan-Meier curves for patient subgroups
by plotting the proportion of patients surviving versus the
number of months after initial diagnosis. Interestingly,
we found patient clusters containing patient subgroups
having statistically significantly different survival out-
comes from both microarray gene expression and copy
number alteration datasets. For examples, we found that
group A patients have poorest survival, compared to
group B and C in 17th cluster from microarray gene
expression dataset. Logrank test indicated that group A,
and B, C patient groups indeed have significantly differ-
ent survival outcomes (p-value < 0.00690, Hazard ratio
= 1.2448), with median survival time of 23.95 months
for group A and 32 and 29.55 months for group B
and C, respectively (Fig 4A). Similarly, in copy number
alteration data sets, we were able to identify patient
groups have significantly different survival profile. We
found three patient subgroups, with group A and B
patients have poorest survival in 12th cluster. Logrank
test indicated that group A, B, and C patient groups
have significantly different survival outcomes (p-value <
0.01670, Hazard ratio = 1.2963), with median survival
time of 27.25 and 22.80 months for group A and B,
and 33.05 months for group C (Fig 4B). To investigate
which pathway activities associated with patient subpop-
ulations having different survival outcomes, we analyzed
pathway activities based on basis in each row (e.g.,
pathway activities corresponding with patient clusters)
in the matrix S. Specifically, we ranked pathways based
on basis in each row in the matrix S. For example,
in the microarray gene expression dataset, we found
that there are many cancer-related pathways associated
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TABLE II
Top ranked pathway activities in patient clusters from microarray gene expression and copy number alteration experiment THIS

TABLE REPORTS THE TOP RANKED PATHWAY ACTIVITIES ASSOCIATED WITH 17TH (LEFT) AND 12TH (RIGHT) PATIENT CLUSTERS FROM
MICROARRAY GENE EXPRESSION AND COPY NUMBER ALTERATION DATA, RESPECTIVELY.

Ranking Pahtway (Gene expression) Pahtway (Copy number alteration)
1 KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION KEGG PATHWAYS IN CANCER
2 KEGG COMPLEMENT AND COAGULATION CASCADES KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION
3 KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION KEGG RIBOSOME
4 KEGG CELL ADHESION MOLECULES CAMS KEGG CELL ADHESION MOLECULES CAMS
5 KEGG PATHWAYS IN CANCER KEGG UBIQUITIN MEDIATED PROTEOLYSIS
6 KEGG PURINE METABOLISM KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION
7 KEGG CHEMOKINE SIGNALING PATHWAY KEGG MAPK SIGNALING PATHWAY
8 KEGG HEMATOPOIETIC CELL LINEAGE KEGG WNT SIGNALING PATHWAY
9 KEGG MAPK SIGNALING PATHWAY KEGG HUNTINGTONS DISEASE
10 KEGG TGF BETA SIGNALING PATHWAY KEGG CHEMOKINE SIGNALING PATHWAY

with patient subgroups in 17th patient cluster including
‘pathways in cancer’, ‘mitogen-activated protein kinase
(MAPK) signaling pathway’, and ‘transforming growth
factor beta (TGF-beta) signaling pathway’. Deregulation
of activities in MAPK and TGF-beta signaling are known
for being involved in many types of cancers including
ovarian, breast, lung, prostate, and renal cancers [5],
[13]. In the copy number alteration dataset, we also
found many cancer-related pathways as top ranked path-
ways associated with patient subgroups in 12th patient
cluster including ‘pathways in cancer’, ‘MAPK signaling
pathway’, and ‘Wnt signaling pathway’. Alteration of
Wnt signaling pathway have been suggested to play a
central role in ovarian tumorigenesis [8]. Moreover,
recent studies showed that ‘cytokine cytokine receptor
interaction’, and ‘neuroactive ligand receptor interaction’
pathways which are highly ranked in both microarray
gene expression and copy number alteration datasets
could play a major role in ovarian tumorigenesis and
survival [17], [4]. The list of top ranked pathway
associated with patient clusters are reported in Table
II. These results suggest that the proposed method may
allow stratification of cancers at the pathway level,
which could lead to the development of more targeted
therapeutics.

VI. CONCLUSIONS
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the true factor matrices F0, S0 and G0 with m = 10,
n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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that orthogonality constraints interfere with discovering
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are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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the true factor matrices F0, S0 and G0 with m = 10,
n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.

4

X

5 10 15

2

4

6

8

10

F
0

1 2 3

2

4

6

8

10

S
0

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

G
0

1 2 3 4

5

10

15

Fig. 1. Data matrix and true matrix factors.

FSG
T

5 10 15

2

4

6

8

10

F

1 2 3

2

4

6

8

10

S

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

G

1 2 3 4

5

10

15

Fig. 2. Orthogonal NMTF [18].
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n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
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clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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the true factor matrices F0, S0 and G0 with m = 10,
n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.
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the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
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By having three factors instead of two, one can
gain a number of benefits. First, under orthogonality
constraints, bi-factorization may be too restrictive; an
additional factor S can furnish necessary degrees of
freedom to obtain “good” factorization [7]. Also, an
important benefit of tri-factorization is that it allows
the number k1 of the column clusters to be different
from the number k2 of the row clusters. This is useful
when the rows and the columns correspond to different
entities, say, documents and words contained in them,
respectively. Finally, in some applications, direct inter-
pretation of S is possible and meaningful. Specifically, S
can reveal how different row clusters are associated with
column clusters, providing a summary of the interaction
structure [12].

The goal of this work is to extend NMTF to incor-
porate sparsity and robustness. Sparsity constraints in
NMF were shown to yield more “local” features in an
instance of a facial images dataset in [11], which are
easier to interpret. Without promoting sparsity, NMF
sometimes converged to “global” image segments that
do not visually correspond to different parts of the face.
Also, along the arguments of variable selection applica-
tions, sparsity can help pick the most relevant variables,
which is instrumental when such analyses serve as a
preliminary step for more costly verification processes,
e.g., as in medicine. In the context of NMTF, enforcing
sparsity in the S factor in particular can provide a more
succinct characterization of association structures.

To address outliers that may be present in the data due
to, e.g., contaminated samples in biological experiments,
noisy measurements, and other types of errors, the uni-
versal sparsity-controlling outlier rejection (USPACOR)
framework is adopted in the context of NMTF [9]. By
capitalizing on typical sparsity of outliers, erroneous data
entries are effectively compensated to align with the
NMTF structure. Simple update rules to compute the
proposed NMTF are derived taking the multiplicative
update approach.

The rest of the paper is organized as follows. Sec. II
provides the problem formulation for sparse NMTF, and
develops a multiplicative update algorithm. Incorporation
of robustness is discussed in Sec. III. Tests using simple
synthetic data are described in Sec. IV. Preliminary
results based on real datasets in a novel bioinformatics
application are reported in Sec. V. Conclusions and
future directions are given in Sec. VI.

II. SPARSE NMTF
A. Problem Statement

To promote sparsity of the factors in NMTF, ap-
propriate penalty terms can be added to the objective

function of (2). Among widely-used sparsity-inducing
penalty is the one based on the ⇥1-norm, which is the best
convex relaxation of the cardinality, or the “⇥0-norm.” To
facilitate derivation of multiplicative update rules, as will
be detailed in Sec. II-B, squared ⇥1-norm penalties are
employed.

Based on the preceding discussion, given a non-
negative data matrix X ⇥ Rm�n

+ , the proposed NMTF
seeks to find factor matrices F ⇥ Rm�k1

+ , S ⇥ Rk1�k2
+ ,

and G ⇥ Rn�k2
+ that are sparse, by solving the following

optimization problem:

min
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where ⇤F⇤1 denotes the ⇥1-norm of F, which is equal
to the sum of the absolute values of all the entries of F.
Since the entries of F are nonnegative, ⇤F⇤1 is equal to
the sum of all the entries of F.

Based on the preceding discussion, given a non-
negative data matrix X ⇥ Rm�n

+ , the proposed NMTF
seeks to find factor matrices F ⇥ Rm�k1

+ , S ⇥ Rk1�k2
+ ,

and G ⇥ Rn�k2
+ that are sparse, by solving the following

optimization problem:
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where ⇤F⇤1 denotes the ⇥1-norm of F, which is equal
to the sum of the absolute values of all the entries of F.
Since the entries of F are nonnegative, ⇤F⇤1 is equal to
the sum of all the entries of F.

Some authors advocated enforcing orthogonality of F
and G to strengthen clustering interpretation [7], as well
as to obtain more distinctive set of centroids [19]. On
the other hand, others argued that orthogonality fails to
capture natural semantic structures in some applications,
as it precludes overlapping (soft) clusters [18]. Here,
we do not enforce orthogonality to allow soft clusters.
However, it is noted that sparsity does not forestall
orthogonality; in fact, sparse nonnegative vectors are
more likely to be orthogonal. Our experience is that
orthogonal NMTF is less sensitive to initialization, and
that sparse NMTF initialized with orthogonal factors
often yields good results.

B. Algorithm

Many algorithms have been developed for NMF [2].
The most widely used are based on multiplicative update
rules [15]. Since (1) is nonconvex, alternating opti-
mization is used to obtain a locally optimal solution.
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additional factor S can furnish necessary degrees of
freedom to obtain “good” factorization [7]. Also, an
important benefit of tri-factorization is that it allows
the number k1 of the column clusters to be different
from the number k2 of the row clusters. This is useful
when the rows and the columns correspond to different
entities, say, documents and words contained in them,
respectively. Finally, in some applications, direct inter-
pretation of S is possible and meaningful. Specifically, S
can reveal how different row clusters are associated with
column clusters, providing a summary of the interaction
structure [12].

The goal of this work is to extend NMTF to incor-
porate sparsity and robustness. Sparsity constraints in
NMF were shown to yield more “local” features in an
instance of a facial images dataset in [11], which are
easier to interpret. Without promoting sparsity, NMF
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framework is adopted in the context of NMTF [9]. By
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Some authors advocated enforcing orthogonality of F
and G to strengthen clustering interpretation [7], as well
as to obtain more distinctive set of centroids [19]. On
the other hand, others argued that orthogonality fails to
capture natural semantic structures in some applications,
as it precludes overlapping (soft) clusters [18]. Here,
we do not enforce orthogonality to allow soft clusters.
However, it is noted that sparsity does not forestall
orthogonality; in fact, sparse nonnegative vectors are
more likely to be orthogonal. Our experience is that
orthogonal NMTF is less sensitive to initialization, and
that sparse NMTF initialized with orthogonal factors
often yields good results.

B. Algorithm

Many algorithms have been developed for NMF [2].
The most widely used are based on multiplicative update
rules [15]. Since (1) is nonconvex, alternating opti-
mization is used to obtain a locally optimal solution.
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• Given: Dog and human gene expression, pathway data, and dog sugbgroup
• Task : Identify patient subgroups and pathway activities related with patient subgroups 
in human

SJ Kim, T. Hwang, G.B. Giannakis,  CIP 2012
T. Hwang and et. al., Nucleic Acids Research 2012
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n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.

4

X

5 10 15

2

4

6

8

10

F
0

1 2 3

2

4

6

8

10

S
0

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

G
0

1 2 3 4

5

10

15

Fig. 1. Data matrix and true matrix factors.

FSG
T

5 10 15

2

4

6

8

10

F

1 2 3

2

4

6

8

10

S

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

G

1 2 3 4

5

10

15

Fig. 2. Orthogonal NMTF [18].

the true factor matrices F0, S0 and G0 with m = 10,
n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
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that orthogonality constraints interfere with discovering
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It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.
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Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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employed on X with results shown in Fig. 2. Although
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that orthogonality constraints interfere with discovering
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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the true factor matrices F0, S0 and G0 with m = 10,
n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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the true factor matrices F0, S0 and G0 with m = 10,
n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.
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common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.

4

X

5 10 15

2

4

6

8

10

F
0

1 2 3

2

4

6

8

10

S
0

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

G
0

1 2 3 4

5

10

15

Fig. 1. Data matrix and true matrix factors.

FSG
T

5 10 15

2

4

6

8

10

F

1 2 3

2

4

6

8

10

S

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

G

1 2 3 4

5

10

15

Fig. 2. Orthogonal NMTF [18].

the true factor matrices F0, S0 and G0 with m = 10,
n = 15, k1 = 3 and k2 = 4 (best viewed in colors). The
entries of the factors assume binary values: the dark red
areas represent entries with value 1, and dark blue areas
correspond to value 0. To test the case of overlapping
clusters, the columns of F0 and G0 were chosen to
be non-orthogonal. To generate the data matrix X, first
F0S0GT

0 was formed, followed by binary quantization.
Then, entries X1,1 and X4,10, which were originally
ones, were flipped to zeros to test robustness. The
resulting X is shown in the upper-left panel in Fig. 1.

As a benchmark, the orthogonal NMTF in [18] was
employed on X with results shown in Fig. 2. Although
relevant clusters are roughly identified, it can be seen
that orthogonality constraints interfere with discovering
correct clusters and associations. Also, many of the
discovered structures are “bluish” (close to 0), and thus
are not clearly contrasted from the dark blue background.

It turns out that the novel NMTF algorithm is quite
sensitive to initialization. It is customary to use basic
clustering techniques such as k-means for initialization
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Fig. 3. Robust sparse NMTF.

of NMF. In our test, orthogonal NMTF in Fig. 2 was
used as initial factors. The resulting NMTF is shown in
Fig. 3(a), where it can be seen that the correct structures
are much more clearly identified (with “reddish” colors).
Moreover, the overlaps in the clusters are better revealed.

The upper-left panel in Fig. 3(a) corresponds to the
reconstruction after compensating for the outliers. The
reconstruction before compensation is shown in the left
panel of Fig. 3(b), which is closer to the original X. In
the right panel of Fig. 3(b) is shown the O matrix, where
the dark red background now represents zeros, and the
blue dots signify negative values. It can be seen that the
locations of the outliers have been correctly indicated.

V. APPLICATION TO CANCER PATIENT CLUSTERING
AND PATHWAY DISCOVERY

Identification of patient subpopulations that share
common pathway activity is essential to understanding
the complexities of genomic alterations, and to develop
efficient therapeutic strategies (e.g., pathway-specific
therapeutics) in cancer genomics. The proposed NMTF
algorithm is used to: i) identify patient subgroups that
have significantly different survival outcomes; and ii)
assess the association of pathway activities with overall
survival by integrating microarray gene expression or
copy number alterations with pathway database.
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By having three factors instead of two, one can
gain a number of benefits. First, under orthogonality
constraints, bi-factorization may be too restrictive; an
additional factor S can furnish necessary degrees of
freedom to obtain “good” factorization [7]. Also, an
important benefit of tri-factorization is that it allows
the number k1 of the column clusters to be different
from the number k2 of the row clusters. This is useful
when the rows and the columns correspond to different
entities, say, documents and words contained in them,
respectively. Finally, in some applications, direct inter-
pretation of S is possible and meaningful. Specifically, S
can reveal how different row clusters are associated with
column clusters, providing a summary of the interaction
structure [12].

The goal of this work is to extend NMTF to incor-
porate sparsity and robustness. Sparsity constraints in
NMF were shown to yield more “local” features in an
instance of a facial images dataset in [11], which are
easier to interpret. Without promoting sparsity, NMF
sometimes converged to “global” image segments that
do not visually correspond to different parts of the face.
Also, along the arguments of variable selection applica-
tions, sparsity can help pick the most relevant variables,
which is instrumental when such analyses serve as a
preliminary step for more costly verification processes,
e.g., as in medicine. In the context of NMTF, enforcing
sparsity in the S factor in particular can provide a more
succinct characterization of association structures.

To address outliers that may be present in the data due
to, e.g., contaminated samples in biological experiments,
noisy measurements, and other types of errors, the uni-
versal sparsity-controlling outlier rejection (USPACOR)
framework is adopted in the context of NMTF [9]. By
capitalizing on typical sparsity of outliers, erroneous data
entries are effectively compensated to align with the
NMTF structure. Simple update rules to compute the
proposed NMTF are derived taking the multiplicative
update approach.

The rest of the paper is organized as follows. Sec. II
provides the problem formulation for sparse NMTF, and
develops a multiplicative update algorithm. Incorporation
of robustness is discussed in Sec. III. Tests using simple
synthetic data are described in Sec. IV. Preliminary
results based on real datasets in a novel bioinformatics
application are reported in Sec. V. Conclusions and
future directions are given in Sec. VI.

II. SPARSE NMTF
A. Problem Statement

To promote sparsity of the factors in NMTF, ap-
propriate penalty terms can be added to the objective

function of (2). Among widely-used sparsity-inducing
penalty is the one based on the ⇥1-norm, which is the best
convex relaxation of the cardinality, or the “⇥0-norm.” To
facilitate derivation of multiplicative update rules, as will
be detailed in Sec. II-B, squared ⇥1-norm penalties are
employed.

Based on the preceding discussion, given a non-
negative data matrix X ⇥ Rm�n

+ , the proposed NMTF
seeks to find factor matrices F ⇥ Rm�k1

+ , S ⇥ Rk1�k2
+ ,

and G ⇥ Rn�k2
+ that are sparse, by solving the following

optimization problem:

min
F⇥0,S⇥0,G⇥0
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where ⇤F⇤1 denotes the ⇥1-norm of F, which is equal
to the sum of the absolute values of all the entries of F.
Since the entries of F are nonnegative, ⇤F⇤1 is equal to
the sum of all the entries of F.

Based on the preceding discussion, given a non-
negative data matrix X ⇥ Rm�n

+ , the proposed NMTF
seeks to find factor matrices F ⇥ Rm�k1

+ , S ⇥ Rk1�k2
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optimization problem:
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where ⇤F⇤1 denotes the ⇥1-norm of F, which is equal
to the sum of the absolute values of all the entries of F.
Since the entries of F are nonnegative, ⇤F⇤1 is equal to
the sum of all the entries of F.

Some authors advocated enforcing orthogonality of F
and G to strengthen clustering interpretation [7], as well
as to obtain more distinctive set of centroids [19]. On
the other hand, others argued that orthogonality fails to
capture natural semantic structures in some applications,
as it precludes overlapping (soft) clusters [18]. Here,
we do not enforce orthogonality to allow soft clusters.
However, it is noted that sparsity does not forestall
orthogonality; in fact, sparse nonnegative vectors are
more likely to be orthogonal. Our experience is that
orthogonal NMTF is less sensitive to initialization, and
that sparse NMTF initialized with orthogonal factors
often yields good results.

B. Algorithm

Many algorithms have been developed for NMF [2].
The most widely used are based on multiplicative update
rules [15]. Since (1) is nonconvex, alternating opti-
mization is used to obtain a locally optimal solution.
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• Given: Dog and human gene expression, pathway data, and dog sugbgroup
• Task : Identify patient subgroups and pathway activities related with patient subgroups 
in human

Use inferred pathway activities from dog to 
human cancer

S dog

S dog

Cross-species Matrix tri-factorization
SJ Kim, T. Hwang, G.B. Giannakis,  CIP 2012
T. Hwang and et. al., Nucleic Acids Research 2012



Experiments (Osteosarcoma)
• Osteosarcoma: 34 dogs (GSE27217) and 34 patients (GSE16091) with 
clinical data 
• Pathway: Reactome pathway (430 pathways)
• 5 (short) vs 12 (long) months for dog subgroup

Hazard ratio: 2.336
p-value < 0.01827

Group 1: 2.126 years
Group 2: 4.573 years
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T. Hwang and et. al., Nucleic Acids Research 2012



Take home message

TP53 subnetwork STAT1 subnetwork BRCA1 subnetwork
SRC BRCA1•SJ Kim, T. Hwang*, Georgios B. Giannakis, “Sparse Robust Matrix Tri-factorization with 

Application to Cancer Genomics”, International Workshop on Cognitive Information 
Processing, CIP 2012
•T. Hwang, Maoqiang Xie, Gowtham Atluri, Sanjoy Dey, Vipin Kumar, Changjin Hong and Rui 
Kuang. “Co-clustering Phenome-genome for Phenotype Classification and Disease Gene 
Discovery”, Nucleic Acids Research  2012

• Integrating genomic data with pathway database can help to improve 
an ability for patient stratification and pathway discovery 

• Leveraging knowledge (i.e., pathway activities) from dog cancer can 
help to study human cancer

• Our proposed method is a general method, and applicable to other 
problems

- Inner-species analysis: infer pathway activities from one data, and 
use them to study another data

- Tissue or cancer type specific dysregulated pathway activity 
analysis

SJ Kim, T. Hwang, G.B. Giannakis,  CIP 2012
T. Hwang and et. al., Nucleic Acids Research 2012



Large-scale network-based integrative analysis identifies 
common pathways disrupted by copy number alterations 

across cancers 

 TaeHyun Hwang†1, Gowtham Atluri2, Rui Kuang2, Vipin Kumar2, Timothy 
Starr1, Peter M Haverty3, Zemin Zhang3, Jinfeng Liu†3 

 1Masonic Cancer Center, 2Department of Computer Science and Engineering, University of 
Minnesota - Twin Cities; 3Department of Bioinformatics and Computational Biology, Genentech 
Inc.

*Joint work with Genentech
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1. Comprehensive pathway activity map across 16 types of cancers
2. Common and cancer-type specific disrupted pathway
3. Network view how copy number alterations can affect pathway
4. Pathway signatures to identify patient subgroups

T. Hwang et. al, under review 
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Collect 
member genes 

in pathways 
using prior 
knowledge

Predefined pathways from Biocarta, 
Reactome, KEGG, or  Subnetworks

 & overlay scores on 
the network

inferred gene activity scores 
using label propagation

*Genes not altered in copy number have no initial 
gene activity scores (e.g. initial gene score: 0)

Altered genes
Genes not altered in copy number

*We use 
GISTIC to 

identify altered 
genes in copy 

number 
alterations

OverviewT. Hwang et. al, under review 



Experiments• Data

• 2172 patients from 16 different types of cancers using 
Affymetrix 250k sty SNPs array data [Beroukhim et al., 
Nature 2010]

- Use pennCNV to measure CNA, and use GLAD to 
segmentation 

- Use GISTIC to find significantly altered copy number 
region

• Human protein-protein interaction network from HPRD 
database (May 2010) 

- 9674 proteins and 34,998 protein interactions

• Pathway database

- KEGG, Biocarta, and Reactome from MSigD, and 
conserved subnetworks cross species 

T. Hwang et. al, under review 
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Cancer type specific disrupted pathway Commonly disrupted pathway
TEL: Telomeres, Telomerase, Cellular 
Aging, and Immortality
TGFB: TGF-beta
TRKA: NTRK1 

CYTOKINE: Cytokine Network
INFLAM: Inflammatory Response
IL5: IL 5 Signaling Pathway

Pathway activity view of cancers
T. Hwang et. al, under review 



TGF-beta signaling pathway

Amplification Deletion

Colorectal cancer
Ovarian cancer

1% 50%30%20%10% 40%

Frequency

60%

A B
member genes 

in TGF-beta pathway  

Member genes in the pathway have low frequency! 
but...

T. Hwang et. al, under review 
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TGF-beta signaling pathway
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Commonly disrupted pathways across cancers 
correlate with clinical outcomes
A B

A

B

C

A
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A B

p < 7.94e-04
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Time (months)

Group A

Group B

Group C

p-value < 0.0000198
Hazard ratio = 1.4910

Group A vs C

Shedden K, Taylor JMG, Enkemann SA, Tsao MS, Yeatman TJ, et al. (2008) Gene expression–based survival prediction in 
lung adenocarcinoma: a multi-site, blinded validation study. Nature medicine 14: 822-827

Commonly disrupted pathways may allow stratification of 
cancers at the pathway level, which could lead to the 
development of more targeted therapeutic!

T. Hwang et. al, under review 
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Hazard ratio = 1.3089

 p-value <0.00906
Hazard ratio: 1.4222

Commonly disrupted pathways across cancers 
correlate with clinical outcomes

T. Hwang et. al, under review 
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ORIGINAL ARTICLE

AR intragenic deletions linked to androgen receptor splice
variant expression and activity in models of prostate cancer
progression
Y Li1,10, TH Hwang1,2,10, LA Oseth3, A Hauge4, RL Vessella5,6, SC Schmechel7,8, B Hirsch3,7,9, KB Beckman4, KA Silverstein1,2

and SM Dehm1,7

Reactivation of the androgen receptor (AR) during androgen depletion therapy (ADT) underlies castration-resistant prostate
cancer (CRPCa). Alternative splicing of the AR gene and synthesis of constitutively active COOH-terminally truncated AR variants
lacking the AR ligand-binding domain has emerged as an important mechanism of ADT resistance in CRPCa. In a previous
study, we demonstrated that altered AR splicing in CRPCa 22Rv1 cells was linked to a 35-kb intragenic tandem duplication of
AR exon 3 and flanking sequences. In this study, we demonstrate that complex patterns of AR gene copy number imbalances
occur in PCa cell lines, xenografts and clinical specimens. To investigate whether these copy number imbalances reflect AR
gene rearrangements that could be linked to splicing disruptions, we carried out a detailed analysis of AR gene structure in the
LuCaP 86.2 and CWR-R1 models of CRPCa. By deletion-spanning PCR, we discovered a 8579-bp deletion of AR exons 5, 6 and 7
in the LuCaP 86.2 xenograft, which provides a rational explanation for synthesis of the truncated AR v567es AR variant in this
model. Similarly, targeted resequencing of the AR gene in CWR-R1 cells led to the discovery of a 48-kb deletion in AR intron 1.
This intragenic deletion marked a specific CWR-R1 cell population with enhanced expression of the truncated AR-V7/AR3
variant, a high level of androgen-independent AR transcriptional activity and rapid androgen independent growth. Together,
these data demonstrate that structural alterations in the AR gene are linked to stable gain-of-function splicing alterations in
CRPCa.

Oncogene advance online publication, 23 January 2012; doi:10.1038/onc.2011.637

Keywords: prostate cancer; androgen receptor variants; castration-resistant; intragenic rearrangement, AR alternative splicing

INTRODUCTION
PCa initially presents as an androgen- and androgen receptor (AR)-
dependent disease. Therefore, suppressing the production or
action of androgens, which inhibits AR transcriptional activity,
leads to stabilization or regression of advanced PCa. The duration
of response to androgen depletion therapy (ADT) is variable with
the end point typically marked by rising serum levels of prostate
specific antigen, an AR transcriptional target gene and rapid
growth of PCa metastases. This transition from androgen-
dependent to castration-resistant prostate cancer (CRPCa) is
frequently due to aberrant AR re-activation despite ongoing
treatment with AR-targeted therapies.1 -- 4 Various mechanisms
have been advanced to explain AR activation in CRPCa cells.
These include AR gene amplification and/or AR protein over-
expression,5 -- 12 point mutations that permit promiscuous AR
transcriptional responses13 -- 20 and intra-tumor steroid synthesis
or sequestration.21 -- 24 This knowledge has driven the clinical
development of new inhibitors of androgen production and AR
signaling,25 including the CYP17 inhibitor abiraterone acetate,
which has been recently shown to increase overall survival in
patients with metastatic CRPCa.26

Synthesis of truncated AR variant proteins via AR alternative
splicing has recently emerged as an additional mechanism of ADT
resistance in PCa.27 -- 31 These proteins lack the AR ligand-binding
domain, display constitutive, ligand-independent transcriptional
activity, and mediate androgen-independent growth of PCa cells
in various model systems.27 -- 31 Increased expression of the AR3
variant protein (also termed AR-V729) in PCa prostatectomy
specimens is associated with biochemical recurrence following
surgery.28 In addition, increased mRNA expression of alternatively
spliced AR variants in PCa bone metastases is associated with
shorter survival.32 Therefore, understanding the mechanisms
leading to increased synthesis of these species could provide
important prognostic information, or perhaps guide more
effective use of therapies that inhibit ligand-dependent AR
activity.
Truncated AR variants proteins were originally discovered and

functionally characterized in the CRPCa 22Rv1 and CWR-R1 cell
lines,27 -- 29 and the LuCaP 86.2 PCa xenograft.30 In 22Rv1 cells, a
35-kb AR intragenic tandem duplication is linked to altered
splicing of full-length AR, as well as synthesis of truncated
AR variants.33 However, the mechanisms driving AR splicing
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✓ < 6 months for publication
• 2 months for data generation
• < 1 month for data analysis and validation



• Reactivation of the androgen receptor (AR) during androgen depletion 
therapy (ADT) underlies castration-resistant prostate cancer (CRPCa).

• Alternative splicing of the AR gene and truncated AR variants lacking the 
AR ligand binding domain has emerged as an important mechanism of 
ADT-resistance in CRPCa.

• Truncated AR variants proteins were originally discovered and 
functionally characterized in the CRPCa 22Rv1 and CWR-R1 cell lines, and 
the LuCaP 86.2 PCa xenograft

•In a previous study, we demonstrated that altered AR splicing in CRPCa 
22Rv1 cells was linked to a 35 kb intragenic tandem duplication of AR exon 
3 and flanking sequences

✓ In this study, we wanted to investigate the link between AR gene 
structure alterations and enhanced synthesis of truncated AR 
variants in CRPCa CWR-R1 cell lines using paired-end sequencing data

Motivation
Y LI, T. Hwang et. al, Oncogene 2012



DNA Sample Preparation 2!

Agilent SureSelect DNA Capture Array Protocol 17

Figure 2 SureSelect Target Enrichment System Capture Process

Select genomic regions that are 
interested in

Y LI, T. Hwang et. al, Oncogene 2012

Data preparation
• 2X76bp paired-end sequencing data using GAIIX illumina with SureSelect

- 2X50bp paired-end seq using HiSeq 
- 2X76bp paired-end seq using Matepair
- 2X150bp paired-end seq using MiSeq  

• 6000X coverage



Structural Variation Call w/ Hydra

Y LI, T. Hwang et. al, Oncogene 2012

Discussion

We have developed a genome-wide approach for identifying, as-
sembling, and interpreting SV breakpoints, and applied it to two
inbred mouse genomes. Our strategy combines PEM with short
paired-end reads (HYDRA) and breakpoint definition with long-
reads. Until accurate whole-genome assembly becomes feasible, it
is likely that this approach (or some variant of it) will serve as the
most powerful and economical means to study structural variation
landscapes. We refined our method using data from the reference
genome itself, and we demonstrated their accuracy at both unique
and repetitive loci. We documented 7196 high-confidence SVs
between the two strains and inspected 3316 breakpoint sequences
at single-nucleotide resolution. These efforts resulted in five main
findings: (1)most variation is caused by retrotransposition of LTRs,
LINEs, and host-transcripts; (2) deletions are far more common
than duplications and inversions; (3) most LSV breakpoints in our
data set are explained by mechanisms requiring little or no ho-
mology, such as NHEJ or MMBIR; (4) 16% of LSVs are found in
clusters or have breakpoints that have undergone small-scale
rearrangement, and are therefore complex in nature; and (5) LSV

breakpoints are significantly enriched at segmental duplications,
but this effect cannot be explained solely by NAHR.

The lessons learned from this study can inform future se-
quence-based studies of SV. The fact that we re-sequenced a B6
individual that is so closely related to the reference genome
allowed us to clearly distinguish bona fide genetic variation from
spurious differences. In addition to known sequencing artifacts
(Quail et al. 2008), as well as others that we have identified (see
Methods), this unique control identified read-mapping and refer-
ence genome quality asmajor sources of false positives. These results
underscore the need for continued efforts to improve reference ge-
nome assemblies for key species and illustrate that sacrificing short-
read alignment sensitivity in the interest of speed and data storage
comes at the cost of a substantial increase in false positives.Whilewe
note that longer andmore accurate reads shouldmitigate the current
alignment bottleneck, the challenge presented by interpreting
multiple mappings will remain until read lengths span large geno-
mic duplications. This will be especially true for efforts to resolve SV
in complex genomic regions and highly rearranged cancer genomes.
However, our results show that evenwith short-reads it is possible to
accurately map SV in duplicated and repetitive genomic regions,

Figure 4. Visualizing a complex SV in a promoter region. (A) A snapshot of aligned sequence data at a validated SV locus from our local mirror of the
UCSCGenome Browser (chr9: 98,880,333–98,889,602). At this locus, HYDRA detected one deletion and two inversion breakpoints in the DBA strain from
the aligned discordant matepairs (red, those suggesting a deletion; blue, those suggesting an inversion), where F denotes a read mapping to the forward,
or plus strand, and R the reverse strand. The dearth of uniquely aligned concordantmatepairs (dark green) corroborates the deletion call. Note that a single
concordant matepair is aligned within the span of the putative deletion where the two inversion breakpoints overlap, indicating that this segment is not
deleted. Three WGS split-reads (gray) from the DBA strain also confirm the HYDRA calls and the observed complexity. (B) The three WGS split-reads were
assembled into a 712-bp breakpoint sequence (breaktig) that was then aligned to the reference genome. The image displayed (using PARASIGHT) is
representative of the 3316 such images we used to inspect assembled breakpoints. Aligned sections in black are in the same orientation in the breaktig and
the reference genome, and the alignments in orange are in the opposite orientation. The complex variant involves two adjacent deletions of 2.5 kb and
0.9 kb, which are separated by an intervening ;300-bp segment that was not deleted but, rather, inverted. An additional 15-bp deletion is present
between the two rightmost alignments to the reference, but is difficult to see at this scale.

Mapping and assembly of structural variation

Genome Research 631
www.genome.org

 Cold Spring Harbor Laboratory Press on May 25, 2011 - Published by genome.cshlp.orgDownloaded from 

Discordant cluster

Aaron et al, Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome, Genome biology 2010



1. raw sequences from illumina

2. Filter raw sequences (Remove poor quality reads)

3. Convert raw sequences (qseq format) to fastq data

4. Run fastq quality control (fastQC)

5.  Align filtered pairs with BWA

6. Collect discordant or unaligned paired reads by BWA

7. Re-align discordant or unaligned paired reads by BWA with Novoalign

8. Collect discordant or  unaligned paired reads by Novoalign

9. Re-align discordant or unaligned paired reads by Novoalign 

I0. Identify Structural Variation (SV) from discordant paired reads using Hydra

Screen SV calls => 36 final SV calls 

Hydra pipeline

Our pipeline 
(N = 11,267,612)

(N = 8,105,919)

(N = 7,793,299)

(N = 312,613)

 264,356

785

Paired-end reads
CRW-R1

7,480,686

(N = 265,141)

47,472

Concordant w/ 
hg19

Concordant w/ 
hg19

Concordant w/ 
hg19

Discordant 
pairs yielding 

566 discordant 
mappings

Y LI, T. Hwang et. al, Oncogene 2012



Structural Variation Discovery Visualization

✓ Hydra discovered ~48 kb deletion in AR intron 1 in CWR-
R1 cell line

~48kb deletion

Y LI, T. Hwang et. al, Oncogene 2012
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Validation



Y LI, T. Hwang et. al, Oncogene 2012

Validation



• Design experiments with both biologists and computational biologists from 
the beginning (should know which tools will be used) 

- CREST (longer sequences) vs Hydra (more depth coverage)
- GAIIX, HiSeq, MiSeq, or Mate-pair (sequence length, insertion size)
- Depth coverage (10X, 100X, or 1500X)

• Start with a small number of genes with higher depth coverage (due to the 
heterogeneity of cell population)

• Should understand existing tools (e.g., how it works, and what are 
limitations)

• Quality control!!!!!

Y LI, T. Hwang et. al, Oncogene 2012

Take home message

•Yingming Li*, TaeHyun Hwang*,  LeAnn Oseth, Betsy Hirsch, Robert Vessella, Kenny 
Beckman, Kevin Silverstein, and Scott Dehm, “AR intragenic deletions linked to androgen 
receptor splice variant expression and activity in models of prostate cancer progression”, 
Oncogene 2012
*Joint first author
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