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INTRODUCTION

Developing experimental and computational methods to identify the

functionally important residues of proteins have long been investigated.

Since functionally and structurally important sites of proteins are more

conserved than other residues, many methods based on the conservation

pattern have been developed.1 A different kind of approach is the correlated

mutation analysis (CMA).2–7 In CMA, coevolutionary relationships

between residues are inferred by analyzing the correlated mutational pat-

terns between columns of a multiple sequence alignment (MSA) of a pro-

tein family. One typical application of this analysis is to predict the inter-

residue contacts.2,5,6 Another type of application is to find the functional

sites such as allosterically modulating residue pairs in proteins.4 There are

several recent studies that apply CMA methods to specific proteins. Such

examples are a study on clustering structural and ligand portal residues in

the iLBP protein family,8 and another study showing that the coevolution-

ary information is very helpful to specify the artificial WWW domains.7,9

Recently, viewing a protein as a network of interacting residues has been

gaining much interest.10–15 In such studies, efforts to find the functionally

important sites from protein structures are made. They represent a protein as

a network using interatomic physical interactions and calculate some network

properties such as ‘‘residue centrality’’10 to examine whether these network

properties are related to protein structure and function.10,15 Motivation for

this kind of approach is based on experimental findings that mutations of

most of the residues have little effect on protein function, while perturbation

of a few residues break down the function entirely.16–18 This property is

reminiscent of the network property of scale-free network where the network

is robust against random attack, but highly vulnerable to pointed attack on

so-called hub nodes. The importance of hub nodes arises from the fact that

they play a critical role in information flow of the network because by defini-

tion they are connected to a large number of neighboring nodes. Removal of

a hub node, therefore, is detrimental to the proper functioning of the net-

work. From this observation, it is reasonable to conjecture that we may be

able to identify structurally and/or functionally important residues in pro-

teins by locating some sort of hub nodes in the network made of residues of

a protein.10
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ABSTRACT

It is a common belief that some residues

of a protein are more important than

others. In some cases, point mutations of

some residues make butterfly effect on the

protein structure and function, but in

other cases they do not. In addition, the

residues important for the protein func-

tion tend to be not only conserved but

also coevolved with other interacting resi-

dues in a protein. Motivated by these

observations, the authors propose that

there is a network composed of the resi-

dues, the residue–residue coevolution net-

work (RRCN), where nodes are residues

and links are set when the coevolutionary

interaction strengths between residues are

sufficiently large. The authors build the

RRCN for the 44 diverse protein families.

The interaction strengths are calculated by

using McBASC algorithm. After construct-

ing the RRCN, the authors identify resi-

dues that have high degree of connectivity

(hub nodes), and residues that play a cen-

tral role in network flow of information

(CI nodes). The authors show that these

residues are likely to be functionally im-

portant residues. Moreover, the CI nodes

appear to be more relevant to the function

than the hub nodes. Unlike other similar

methods, the method described in this

study is solely based on sequences. There-

fore, the method can be applied to the

function annotation of a wider range of

proteins.
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In this work, we propose a new type of protein net-

work, and develop a new way to predict the functionally

important residues of proteins by analyzing certain net-

work properties. We assume that there is a network of

evolutionarily related residues of a protein, which is

named the residue–residue coevolution network (RRCN).

This RRCN is an unweighted undirected graph where

nodes are residues of a protein, and links are set depend-

ing on the coevolutionary interaction strengths between

residues. In previous works,10,11 links between residues

are inferred from the direct physical interactions between

residues. In this work, we calculate from the MSA the

interaction strengths that are a measure of how closely

the two residues are evolutionarily related. After con-

structing the RRCN, we identify the residues that have

high degree of connectivity (hub nodes), and the residues

that play a central role in network flow of information

(CI nodes). Next, we show that these residues are likely

to be the functionally important residues. In addition, we

provide evidence that the CI nodes are more relevant to

the protein functions than the hub nodes. Finally, we

compare our results with those of simple conservation

and previous related works.10,19

METHODS

General work flow of this study is shown in Figure 1.

We first construct the RRCN by performing a series of

calculations such as building MSA, calculating residue–

Figure 1
The overall workflow of our experiment. RRCN is the residue–residue coevolution network built in this research, and net_prop stands for the network properties: hubs and

information centrality (CI). The RRCN is a network whose nodes are residues and links are set when the coevolutionary interaction strengths between residues are

sufficiently large. We use the McBASC scores for the interactions. Hub nodes have high degree of connectivity; C I nodes play a central role in network flow of information.

From the RRCN, the two network properties are calculated, and then the comparisons with the functional sites are made.
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residue coevolutionary information by CMA, and making

links between residues. After constructing RRCN, net-

work properties are inferred, and a few top-ranked resi-

dues are selected. Finally, overlap between the selected

residues and the functional residues are analyzed.

Building multiple sequence alignments

To retrieve the homologs of sequences that are used in

this study, we use PSI-BLAST20 against the protein data-

base NR65, which is prepared from ‘‘nr’’ database by cd-

hit.21,22 The options for PSI-BLAST are 2h 0.001 2e

0.001 2j 3. To build the MSAs, we use MUMMALS,23

instead of more popular program CLUSTALW.24 MUM-

MALS is based on the hidden Markov model (HMM),

and its parameters are optimized by using the structural

information. According to the study on MUMMALS,

MUMMALS outperforms CLUSTALW. We use the model

‘‘HMM_1_3_1’’ of MUMMALS, HMM consisting of 1

solvent accessibility category, 3 secondary structure types,

and 1 unmatched state.

Calculating residue–residue coevolutions

Two residues in a protein are said to be interacting if

these two residues are structurally or functionally

coupled. However, deciding whether two residues are

structurally or functionally coupled is not a trivial task.

A common experimental method to detect energetically

coupled interactions is the double mutant cycle analy-

sis.25–28 On the other hand, if protein’s structure is

known, physical interactions between residues can be

deduced from the structure by examining if two residues

make a direct contact, as done in the previous work by

del Sol et al.10 As seen in many examples of allosterically

interacting residues,29 however, interacting residues are

not necessarily spatially close to each other.

These direct and indirect interactions aforementioned

can be inferred by CMA, that is, by analyzing the corre-

lated evolutionary patterns between residues embedded

in MSA of the protein. One of the most widely used

and successful methods in CMA is McBASC algorithm.5

Recently, Ranganathan and coworkers4,30–32 have pro-

posed the statistical coupling analysis (SCA) algorithm

that is designed to detect the coevolution of amino acid

residues in a protein and applied to detecting function-

ally coupled interactions. Dekker et al.3 proposed a

modified algorithm that shows a better performance

when compared with SCA algorithm. We have tried

both SCA algorithm and McBASC algorithm among a

variety of coevolution analysis algorithms. It turns out

that McBASC algorithm gives a somewhat better and

more consistent result than SCA. Accordingly, only the

results obtained by using McBASC algorithm are pre-

sented in this article. The programs for SCA and

McBASC algorithms are downloaded from A. Fodor’s

homepage.3

Constructing and analyzing residue–residue
coevolution network

We assume that there is a network of evolutionarily

related residues of a protein, which is named as the

RRCN. This RRCN is an unweighted undirected graph

where nodes are residues of the protein, and links are set

depending on the coevolutionary interaction strengths

between residues. To set the link between residues, we

need to set the threshold value of interaction strength,

which inevitably affects the network structure, and there-

fore our inferred network properties. To alleviate negative

effect of choosing arbitrary threshold value, we generate

multiple networks by choosing multiple threshold values,

and then for functional analysis we only chose those hub

nodes and CI nodes that repeatedly appear in all net-

works. We select the thresholds in such a way that the

resulting 7 networks have 2, 1, 0.5, 0.20, 0.15, 0.10, and

0.05% of the maximum number of links, respectively. In

addition, before making networks, we remove all pairs of

residues with 22.0 McBASC score because the score rep-

resents too many gaps in MSA columns.

After setting up the RRCN of proteins, we analyze the

networks using two network properties: highly linked

nodes (hub nodes) and nodes with high information cen-

trality scores (CI nodes).33 We chose the top high-rank-

ing nodes the number of which ranges from 20 up to 70,

and then finally select the nodes that appear in all 7 net-

works. Depending on the number of chosen nodes, the

number of finally selected residues per protein varied

from 8.86 to 32.05 for hub nodes, and from 3.70 to

27.82 for CI nodes. Hub nodes are defined as the most

highly linked nodes. In the scale free network, hub nodes

are important in that they guarantee the stability of the

network against random attack. CI is a measure of how

efficiently the information propagates through a network.

CI is defined by

CI
i ¼

DE
E

¼ E½G� � E½G0
i �

E½G�

where E[G] is global efficiency of a network and E[G
0
i] is

also global efficiency but after removing the node i from

the RRCN. Global efficiency is defined by

E½G� ¼ 1

NðN � 1Þ
X
i 6¼j2G

1

dij

where N is the total number of nodes and dij is the

shortest path between ith and jth nodes in the graph G.

Hubs and bridges in a network usually show high CI

score.
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Functional residues

Information on the functional residues is taken from

the del Sol et al.’s article.10 In their study, the functional

residues such as catalytic, ligand and metal binding, and

protein–protein interface residues of 46 diverse protein

families are listed. In this study, we only use 44 proteins

(Table I) because 2 proteins have too small number of

PSI-BLAST hits and, therefore, they are excluded. The

SCOP classes and the representative structures of each

family are shown in Table I. The number of structures of

each family is shown in parentheses. It is clear that the

test set is well selected from diverse structural classes. We

name the set of functionally important residues of these

44 proteins Functional Site Set, which has 1175 functional

residues. To compare our work with del Sol et al.’s work,

we also prepare Expanded Functional Site Set that

includes residues in direct contact with the residues in

functional site set, which has 4092 functional residues.

Two residues are assumed to be in direct contact if at

least one pair of heavy atoms is within 5 between the

two residues.

Previous sequence-based method

We compare our result with ConSeq server.19 ConSeq

server consists of two independent modules: One is to

calculate the evolving rate and the other is to predict sol-

vent accessibility. The core program of ConSeq is Rate4-

Site,34 which takes a role of calculating the evolving rate

from a given MSA. We have obtained this program from

ConSeq server administrator and performed local experi-

ments with default options (Bayesian method). The same

MSAs of RRCN have been used for the Rate4Site. The

outputs of Rate4Site have been converted to the scores

from 1 to 9 using the script given by the administrator,

and the score 9 is used as the threshold score for the

most conserved residues.

Information contents

We also perform a simple experiment on the conserva-

tion scores of the 44 proteins. To calculate the conserva-

tion, we calculate the information content using the fol-

lowing formula,

ICj ¼
X

i¼1;:::;20

Pi;j log
Pi;j

Qi

where i is one of 20 amino acids, j is the column number of

MSA. ICj is the information content of jth column, Pij is

the observed frequency of amino acid i of jth column, and

Qj is the background probability. Background probability

are from the Astral SCOP 1.67 with 40% homology cut-

off.35 While changing the threshold score from 1.5 to 2.5,

the sensitivities and specificities are plotted in Figure 3.

P-value, sensitivity, and specificity

In our study, a selected number of top high-ranking

nodes that have the most links and/or the highest CI

scores are used to analyze their relationship with the

functional residues of proteins. We have examined how

many selected nodes are in fact the functional residues.

To test if the overlap between the selected residues and

the functional residues is statistically significant, we esti-

mate the P-values using the hypergeometric distribu-

tion.36 If N is the total number of residues, n1 the num-

ber of hub nodes in the RRCN (in our case, n1 is the

number of repeatedly appearing nodes), n2 the number

of the functional residues, and m the intersect of n1 and

n2, the probability and P-value are given by

PðmÞ ¼
n1

m

� �
N � n1

n2�m

� �

N

n2

� � ;

P-value ¼
Xminðn1;n2Þ

k¼m

PðkÞ ¼
Xminðn1;n2Þ

k¼0

PðkÞ �
Xm�1

k¼0

PðkÞ

The sensitivity and specificity are defined by

Sn ¼ TP

TPþ FN
; Sp ¼ TP

TPþ FP

where TP, FN, and FP are the number of true positives,

false negatives, and false positives, respectively. In our

experiment, TP 5 m, FP 5 n12m, and FN 5 n22m. For

this calculation, we use an R37 function: P-value 5 phyper

(min(n1,n2),n1,n2n1,n2)2phyper(m21,n1,n2n1,n2).

Table I
The Representative PDB Structures and Their SCOP Class Distribution of the

Protein in the Data Set

SCOP class

A (8) B (11) C (14) C and D (2) D (6) E (2) G (1)
1a59 1a2yA 1a4sA 1bwvA 1ayu 1bsg 1cdtA
1aeiA 1a30A 1a50B 1chrA 1b02A 1g0hA
1aokA 1a78A 1a5cA 1b5eA
1aru 1a8mA 1aoeA 1bmkA
1auwA 1aac 1b00A 1dzaA
1bbhA 1afcA 1bj4A 1ehwA
1ch4A 1am5 1bwkA
1dkfA 1ao5A 1bxkA

1b07A 1cl1A
1cbrA 1d2rA
1fljA 1d5cA

1dciA
1dx4A
1lqaA

PDB id and chain are used for the representative ids. The numbers in parentheses

are the number of the structures of each SCOP family.
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RESULTS

Relationship between residue–residue
coevolution network analysis
and functional sites

To investigate the relationship between the RRCN and

the functional sites, we calculate the sensitivity (Sn), spec-

ificity (Sp), and P-value. We use the functionally impor-

tant site information from the previous research10 as a

golden standard. As shown in Table II where the overall

summary of the comparison results are listed, the major-

ity of residues that are predicted to be the hub nodes

and/or the CI nodes are overlapped with either functional

sites or in direct contact with them. We have changed

the number of initially chosen top high-ranking nodes

from 20 to 70. For hub nodes, the sensitivity on func-

tional site set increases from 0.07 to 0.23. However, the

specificity on the same set slightly decreases from 0.23 to

0.19. On expanded functional site set, the specificity

changes from 0.64 to 0.58. With respect to CI nodes, the

sensitivity increases from 0.05 to 0.21, but the specificity

decreases from 0.33 to 0.20. On expanded functional site

set, the specificity changes from 0.65 to 0.59. More

detailed results with comparison to other methods are

displayed in Figure 3.

Table II also shows P-values. Overall, small or near-

zero P-values indicate that the overlaps are statistically

significant. However, if we calculate P-values for each

individual protein, in majority of cases, statistical signifi-

cance is not guaranteed (STable I–STable IV). This seem-

ingly contradictory result is simply due to the fact that

P-value is greatly affected by the number of samples, and

obviously for individual protein, the number of samples

is very small when compared with the number of samples

of entire proteins in the set. Nonetheless, nearly half of

the proteins show the statistically significant results

(STable I–STable IV) if we use somewhat relaxed signifi-

cance level, 0.1. When the number of initial high-ranking

nodes is 70, with respect to the hub nodes, 30 proteins

show the statistical significance for expanded functional

site set, and with respect to the CI nodes, 20 proteins are

statistically significant. For functional site set, 15 (hub

nodes and CI nodes) proteins show statistically significant

results. These results indicate that the RRCN contains

important information on protein functional sites.

Since we exploit two different network properties, it is

useful to investigate the relationship between the hub

nodes and CI nodes. As mentioned in the previous sec-

tion, the hub nodes play an important role in maintain-

ing the network stability, and CI nodes do a crucial role

in the information flow of a network. All CI nodes are

not necessarily the hub nodes. However, as shown in Fig-

ure 2, 89% of CI nodes are also the hub nodes and 37%

of hub nodes are also the CI nodes, which indicate that

the two network properties of RRCN are largely over-

lapped. In general, as shown in Figure 2 and Table II, Sp
of CI nodes is higher than that of hub nodes, while Sn of

CI nodes is lower than that of hub nodes. Figure 2 and

Table II also show that the nodes that are both the hub

node and the CI node simultaneously are more likely to

be the functional sites than the hub or CI nodes are.

These results suggest that the special nodes of the

RRCN (hub nodes and CI nodes) are in fact important

for the functionality of proteins. Moreover, the CI nodes,

an obscure term in the field of network theory,33 which

have not been gaining much attention when compared

with the hub nodes, may be more significant than the

hub nodes when we interpret the biological meaning of

the network.

Comparison with other methods

To further investigate the performance of our method,

the comparison with simple conservation method and

the other previous structure or sequence-based stud-

Table II
Comparison of the Results from RRCN and Previous Methods

Methods Sn Sp P-value TP FN FP # Pred

Functional site set
Top 20
Hub 0.07 0.23 5.73 E213 88 1087 302 8.86
CI 0.05 0.33 6.77 E215 53 1122 110 3.70
hub and CI 0.04 0.34 1.31 E214 49 1126 96 3.30

Top 70
Hub 0.23 0.19 0.00 E100 265 910 1145 32.05
CI 0.21 0.20 0.00 E100 247 928 977 27.82
hub and CI 0.20 0.20 0.00 E100 230 945 920 26.14

ConSeq 0.27 0.24 0.00 E100 313 862 1006 29.98
res_cent 0.03 0.27 5.23 E207 30 1145 81 2.52
info_cont
(threshold 2.5)

0.11 0.17 2.24 E209 127 1048 611 16.77

Expanded functional site set
Top 20
Hub 0.06 0.64 0.00 E100 248 3844 142 8.86
CI 0.03 0.65 2.88 E214 106 3986 57 3.70
hub and CI 0.02 0.66 3.21 E213 95 3997 50 3.30

Top 70
Hub 0.20 0.58 0.00 E100 813 3279 597 32.05
CI 0.18 0.59 0.00 E100 724 3368 500 27.82
hub and CI 0.17 0.59 0.00 E100 681 3411 469 26.14

ConSeq 0.18 0.56 0.00 E100 744 3348 575 29.98
res_cent 0.02 0.74 3.33 E216 82 4010 29 2.52
info_cont
(threshold 2.5)

0.09 0.48 2.8 E212 354 3738 384 16.77

Sn, Sp, P-value, TP, FP, and FN stand for sensitivity, specificity, P-values, true posi-

tives, false positives, and false negatives of the entire dataset of 44 proteins, respec-

tively. Functional site set is functionally important sites itself. Expanded functional

site set includes the residues in direct contact with functional site set. Top 20 (Top

70) indicates that top 20 (70) high-ranking hub or C I nodes were initially chosen

from the network for analysis. ConSeq, res_cent, and info_cont stand for ConSeq

program (Rate4Site), residue centrality method, and information contents, respec-

tively. #Pred denotes the average number of predictions per protein. See Supple-

mentary Data (STable V–VII) for the results with other numbers of chosen top

high-ranking nodes. The detailed results are also depicted in Figure 3.
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ies10,19 are made. In the previous structure-based

study,10 they define a new concept of residue centrality

(similar to the CI), and the functional residues are pre-

dicted if the positions of residues are in the alignments

with statistically highly significant residue centrality val-

ues (z-score � 2.0) in at least 70% of the structures of

the family members. The definition of Sp and Sn is differ-

ent from ours, so we recalculate the Sn, Sp, and P-values

of the previous study. The average size of our predicted

sites is 8.86 for hub nodes and 3.70 for CI nodes, but

that of the residue centrality nodes of the previous study

is only 2.52. The comparison results are shown in Table

II and Figure 3. Sp is almost the same, but Sn of our

result is better than that of the previous result. It should

be noted that the present method is more general than

the previous method because it does not require struc-

tural information. On top of that, the comparison study

indicates that the residues found by the present method

have more overlap with the functional sites than those by

the previous method.

The second comparison is made with ConSeq server.19

The results are shown in Table II and Figure 3. For func-

tional site set, it is evident that the performance of Con-

Seq is better than those of our result and the previous

method based on residue centrality. However, for

expanded functional site set, the performance of the pres-

ent method is comparable to, or even better than, that of

ConSeq. However, it should be noted that ConSeq

method does not just rely on sequence conservation; it

also uses phylogenetic relations between the sequences,

and estimate the evolutionary rates at each site of the

protein. Therefore, it is interesting to test how the per-

formance of our method compares with that of a method

based on sequence conservation information only. To do

this, we have calculated the information contents (see

Methods) for the same input MSA of RRCN. If the infor-

mation content of one column is higher than a certain

threshold value, we decide that the column is conserved.

The results, shown in Table II and Figure 3, indicate that

the method based on simple sequence conservation per-

forms much worse than ConSeq and the present method,

implying that RRCN contains more information that is

relevant to the protein function than simple sequence

conservation pattern.

In addition to the comparison of several methods, we

examine the overlap between the present method, previ-

ous methods, and the functional sets. The results areFigure 2
Venn diagram showing overlap between the hub nodes or C I nodes with

functional sites when initial top 20 high-scoring nodes are initially chosen. Each

number represents the number of predictions for each category for each network

property. For example, in (a), there are 302 (5 206 1 96) hub nodes that are

not a functional site, while 88 (5 39 1 49) hub nodes are a functional site.

There are 1087 (5 1083 1 4) residues that are not predicted to be a hub node.

Therefore, the specificity is 0.23 [5 88/(302 1 88)], and the sensitivity 0.07 [5
88/(88 1 1087)]. (b) The numbers are for expanded functional site set, and can

be interpreted in the same way.

Figure 3
The sensitivity and specificity plot of Table II. The meanings of colors are depicted

at the upper-right corner. ‘‘hub’’ is hub nodes, ‘‘ci’’ is C I nodes, ‘‘hub and ci’’

means the simultaneous predictions of hub and C I nodes. ‘‘rrcn and conseq’’ and

‘‘rrcn and rescent’’ are the cases of using our method and ConSeq (sequence-based

previous work) or residue centrality (structure-based previous work), respectively,

and ‘‘info_cont’’ is information contents. The numbers next to the information

contents are the threshold. The number of top high-ranking nodes changes from

20 to 70. (a) Functional site set results. As the number of selected top high-

ranking nodes increases, Sp decreases and Sn increases. C
I nodes show better

performance than hub nodes. When we combine our method and other previous

methods, the specificities of previous methods increase. (b) Expanded functional

site set results. C I nodes maintain better performance than hub nodes. Residue

centrality nodes show the best specificity but lowest sensitivity. ConSeq shows good

sensitivity but low specificity. Combining effect of our method and previous

methods are weaker than for the case of functional site set.
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depicted in Figures 4 and 5 as a Venn diagram. The spec-

ificity–sensitivity plots for overlapped residues are shown

in Figure 3. The overlaps between the RRCN method

and the previous methods are quite low, indicating that

they identify quite different set of residues as the func-

tional sites. Meanwhile, it is interesting that the specific-

ity is highest for the residues predicted by RRCN and

residue centrality methods (Sp 5 0.5 for functional site

set, Sp 5 0.8 for expanded functional site set, Figure

4(a,b). Although the concept of CI and residue centrality

is similar, few residues are overlapped [Fig. 4(c,d)]. From

the observations, we can conclude that RRCN (especially

hub nodes) and residue centrality methods are comple-

mentary to each other. Similar tendency is also observed

for the residues predicted by current work and ConSeq:

Specificity is improved. Similarly to the case of RRCN

and residue centrality methods, we can also conclude

that RRCN and ConSeq methods are complementary and

Figure 4
Venn diagram of current work (RRCN, top 20 nodes) and the previous structure-based work (residue centrality). In this diagram, RRCN represents the union of hub and

C I nodes. (a),(b) Sp of RRCN is 0.023 and 0.63, but the intersection of RRCN and previous study is 0.5 and 0.8. (c),(d) few residues are overlapped between C I and

previous study.

Figure 5
Venn diagram for current work (RRCN, top 20 nodes) and the previous

sequence-based work (ConSeq). In this diagram, RRCN represents the union of

hub and C I nodes.

Residue–Residue Coevolution Network Analysis
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cover different area of predictions. Therefore, we expect

that by combining our method with the other previous

methods we can make better prediction on the protein’s

functional sites.

Analysis of the worst examples

To analyze what affects the performance, we investigate

the relation between MSA quality and the specificities of

44 proteins using linear regression. A few explanatory

variables are examined: (i) the mean, (ii) the standard

deviation of sequence similarities between query sequence

and homologs, (iii) the standard deviation of sequence

length differences between query sequence and homologs,

(iv) the number of sequences in MSA, (v) the size of the

functional set, and so forth. None of them show clear

correlation with the Sp, except that the mean of sequence

similarities seems to have weak inverse correlation. On

the basis of this observation, we have checked how the

performance varies when we throw out from the MSAs

some highly similar sequences with the higher sequence

similarity than a certain cutoff value. We perform this

experiment with two worst examples, 1ayu and 1d5cA. It

is observed that the specificities of hub and CI for func-

tional site set increase by 0.2, when the cutoff value is set

below 50, suggesting that maintaining sequence diversity

in MSAs is important.

Examples of the RRCN analysis

We have shown that the network properties of RRCN

are closely related with the functional residues. In Fig-

ure 6, four examples of successful RRCN analysis are

shown; (a) Class A: Hemoglobin 1ch4A and its ligand

heme,38 (b) Class B: Lectin 1a78A and its ligand thioga-

lactosamine, (c) Class C: Tryptophan synthase 1a50B and

the ligand pyridoxal phosphate, and (d) Class D: Thymi-

dylate synthase 1b02A and its ligand FdUMP and cofac-

tor CH2H4-folate.39–41 In our examples, the hub nodes

and CI nodes are depicted in dark gray dot spheres. In

the case of 1ch4A, the predicted residues are around

the ligand heme. With the respect to functional site set

the specificities are 0.67 and 0.55, and the sensitivities

are 0.15 and 0.23 for CI and hub, respectively. For the

Figure 6
Examples of functionally important sites and the predicted residues of top high-ranking 20 nodes. Hub and C I residues are depicted in dark gray dot spheres. Black sticks

are ligands. (a) SCOP A class example (pdbid 1ch4A) and its ligand heme. The predicted residues are around the ligand heme. (b) SCOP B class example (pdbid 1a78A)

and its ligand thiogalactosamine. The predicted residues are clustered near the ligand. (c) SCOP C class example (pdbid 1a50B) and its ligand pyridoxal phosphate. The

ligand is well located on the predicted residues (d) SCOP D class example (pdbid 1b02A) and its ligand FdUMP and cofactor CH2H4-folate. The ligands are packed in

the most of predicted residues. All pictures are drawn using PyMol.
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other SCOP classes, the predicted residues contact well

their ligands. The specificities are 0.64 and 0.54 for

1a78A, 0.75 and 0.63 for 1a50B, and 1.0 and 0.33 for

1b02A for the functional sets. The sensitivities are 0.25

and 0.25 for 1a78A, 0.14 and 0.23 for 1a50B, and 0.04

and 0.17 for 1b02A for the sets (STable I). All pictures

are made with PyMol.42

DISCUSSION

The results we present in this article show that the

RRCN based on the coevolutionary relationship between

residues is closely related to the functionality of proteins.

After we identify some residues that have a special role

in the network, we show that those residues are likely to

be the functionally important sites. Those special nodes

of the network include the nodes with high connectivity

(hub nodes) and the nodes with information centrality

(CI) score. Although the importance of the hub nodes

has been addressed in many areas of the biological sys-

tems, the importance of the CI nodes has not been gain-

ing much attention. We found only one related publica-

tion on the application to the human immune cell net-

work.43 In this work, we demonstrate that the CI nodes

are more likely to be the functional sites than the hub

nodes are. We also show that the nodes being both the

hub node and the CI node simultaneously are most likely

to be the functional residues. Comparison between the

present method and the previous structure-based method

reveals that the overlap between the two methods is low

and the specificity is highest for the residues predicted by

both methods, indicating that both methods are highly

complementary to each other. We also show that our

method and the previous sequence-based method, Con-

Seq, cover different area, and by combining them we can

increase the prediction accuracy.

Our approach has several limitations. The critical step

in building the RRCN is to determine the threshold score

to set the links. Even though we employ a robust method

that is not sensitive to the chosen threshold value, it

nonetheless affects the final results. In this study, the

interaction strengths are calculated by using McBASC

algorithm, which requires high-quality MSAs of many

diversified homologs to ensure the prediction accuracy,

which is not always guaranteed in many cases. It should

be noted that despite the main conclusion of this work

that the RRCN is closely related with the functional resi-

dues, our method at the present form still cannot com-

pete with traditional methods in finding the functional

residues in proteins.44 However, the results from a series

of calculations suggest that an alternative view of pro-

teins as a network is quite relevant, and it can give many

important clues about the protein function to the

researchers who are interested in the relationship between

sequences and functions.
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