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It has been suggested that a close relationship exists between gene essentiality and network

centrality in protein–protein interaction networks. However, recent studies have reported

somewhat conflicting results on this relationship. In this study, we investigated whether

essential proteins could be inferred from network centrality alone. In addition, we deter-

mined which centrality measures describe the essentiality well. For this analysis, we devised

new local centrality measures based on several well-known centrality measures to more

precisely describe the connection between network topology and essentiality. We examined

two recent yeast protein–protein interaction networks using 40 different centrality measures.

We discovered a close relationship between the path-based localized information centrality

and gene essentiality, which suggested underlying topological features that represent

essentiality. We propose that two important features of the localized information centrality

(proper representation of environmental complexity and the consideration of local sub-

networks) are the key factors that reveal essentiality. In addition, a random forest classifier

showed reasonable performance at classifying essential proteins. Finally, the results of

clustering analysis using centrality measures indicate that some network clusters are closely

related with both particular biological processes and essentiality, suggesting that functionally

related proteins tend to share similar network properties.
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1 Introduction

That highly connected nodes (hubs) in a protein interaction

network tend to be more essential is a well-known rela-

tionship between network topology and gene essentiality

[1–5]. This centrality–lethality rule states that essential

proteins are likely to have a high degree of centrality.

Network centrality measures the importance of a node for

signal flow in various ways and has been used to reveal more

precise relationships between hubs and their role in the

network [6]. Importantly, however, because most network

centrality measures depend on global network topology,

changes in network contents or parts of network structure

can have substantially altered the centrality of a node.

Many studies have shown differences between the

network relationships identified, depending on the specific

interaction networks used [1–3, 7, 8]. In particular, Yu et al.
[7] reported an uncorrelated relationship between degree

centrality and essentiality in yeast–protein interaction

networks. As stated in their study, interactions generated

with the yeast two hybrid (Y2H) technique tend to be tran-

sient binary interactions, while interactions identified with

affinity purification followed by MS (AP/MS) typically

represent multi-protein complexes (co-complexes). In their

study, neither of the two networks generated from these two

types of data showed a close relationship between degree
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two hybrid
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and essentiality. Furthermore, in the case of the AP/MS

network, a negative relationship was observed. However, the

network composed of literature-curated interactions

displayed a high linear correlation between centrality and

essentiality (R2 5 0.84), leading to the speculation that social

preference or interest could have an artificial impact on

network topology.

The sampling problem is another serious concern for

proper representation of network structure [9]. Because

protein–protein interaction data sets only contain a portion

of the total number of interactions, modeling networks on

these data sets can provide incorrect information about

network properties unless the experimental sampling

procedure is appropriate and the number of nodes sampled

is large enough to reveal the architecture of the entire

network. In addition, as reported by Zotenko et al. [8],

essential proteins tend to form highly connected clusters

(modular structures) that share similar functions, implying

that network centrality measures that can represent envir-

onmental complexity have a better capacity to reveal essen-

tiality. Considering these various difficulties, we propose

that a better approach to linking network centrality to

essentiality would involve a method that considers both

global and local structures and uses different centrality

measures for different kinds of networks.

In this study, various network centrality measures were

calculated and applied to two recent yeast–protein interac-

tion networks, the Y2H network and the AP/MS network,

both from the study by Yu et al. [7]. Intrinsically, each

centrality measure has unique attributes. We categorized

the centrality measures by their properties, an approach that

helped to reveal hidden factors about network topology and

signal communication in the analyzed networks. Moreover,

localized versions of these centrality measures were devised

to examine sub-network effects. Using all of these measures,

we more precisely explored the relationship between

network topology and essentiality. Our results indicate that

some centrality measures, particularly localized information

centralities, show high correlation with essentiality, which

naturally suggests the presence of underlying topological

features representing essentiality.

From the results of our study, we concluded that essen-

tiality in the AP/MS network is closely related to the local

and dense clusters. The global positions of high-rank nodes

(of localized information centrality) and the decision tree

model for essential nodes support this conclusion about

essentiality. In addition, a random forest classifier model

showed reasonably good sensitivity and coverage for classi-

fying essential nodes in the AP/MS network. Finally, we

uncovered a connection between specific network clusters

and biological processes using clustering analysis.

2 Materials and methods

2.1 Network centrality measures used in this study

and their properties

In this study, 40 centrality measures, including the new

localized centrality measures that we developed, were

applied to yeast–protein interaction networks. The measures

used were: shortest path betweenness (s_bet, lx_s_bet),

shortest path closeness (s_clo, lx_s_clo), eigenvector

centrality (eig, lx_eig), Harary graph centrality (graph),

information centrality (info, lx_info), stress centrality (stress,

lx_stress), random walk betweenness (rw_bet, lx_rw_bet),

Table 1. Summary of the centrality measures used in this study. The centrality measures that we developed are represented in boldface

Centrality Global Local Signal flow Complexity Neighbor
effects

Hub-
related

Reference

Shortest path betweenness s_bet l2_s_bet, l3_s_bet, l4_s_bet Shortest path [10]
Shortest path closeness s_clo l2_s_clo, l3_s_clo, l4_s_clo Shortest path [10]
Eigenvector eig l2_eig, l3_eig, l4_eig Random

walk
Yes [22]

Harary graph graph Shortest path [23]
Information info l2_info, l3_info, l4_info Path Yes [20]
Stress stress l2_stress, l3_stress, l4_stress Shortest path [24]

Random walk

betweenness

l2_rw_bet, l3_rw_bet,

l4_rw_bet

Random
walk

Yes

Random walk closeness l2_rw_clo, l3_rw_clo, l4_rw_clo Random
walk

Yes

Degree degree Yes Yes
Clustering coefficient CC Yes [25]
Subgraph SC l2_SC, l3_SC, l4_SC Random

walk
Yes [14]

Complexity BI Yes [26]

Hub-relatedness maxdeg Yes
Assortative mixing ASS Yes Yes Yes [25, 27]
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random walk closeness (rw_clo, lx_rw_clo), degree centrality

(degree), clustering coefficient (CC), subgraph centrality

(SC), complexity measure (lx_BI), sub-network maximum

degree (lx_maxdeg), and assortative mixing (ASS) central-

ities. In our notation for the localized centrality measures,

using lx_info for localized information centrality as an

example, x can be 2, 3, or 4, specifying the size of the

localized sub-networks centered at a specific node. We

categorized the centrality measures by their properties, such

as assumption of signal flow and effective distance. Simple

descriptions of each centrality measure are shown in Table 1

and in the next section.

2.2 Development of new localized centrality

measures

Localized versions of well-known global centrality measures

were generated to test whether the localized version of a

certain centrality measure was more meaningful in repre-

senting essentiality than the global metric. In this way, we

were able to compare localized centrality measures with

their global counterparts and examine what kind of infor-

mation each provided. The sub-networks around a particular

node were extracted according to the given path length. For

example, a prefix of l2 indicates that the corresponding

centrality measure was calculated from a sub-network with

diameter 2 (for example, l2_eig is the eigenvector centrality

calculated from a sub-network defined by limiting the

length between the node of interest and the outermost node

to 2). Nearly all centrality measures used in this study were

defined both globally and locally.

2.3 The network centrality measures not based on

shortest path

We also considered signal transmission as an underlying

feature of the centrality measures. In graph-theoretic terms,

a walk is any sequence of nodes and edges from any node to

any node, a trail is a walk with distinct edges, and a path is a

trail with distinct nodes.

Freeman closeness [10], a well-known network centrality,

is related to the sum of the shortest path lengths from a

given node to the others. This measures how fast a signal

from one node travels to the other nodes. Freeman

betweenness, another famous network centrality, is related

to the number of shortest paths passing through a given

node, a quantity that measures the volume of signal traffic

for each node. Thus, both measures assume that signals in

the network flow along the ideal path (shortest path), but

this may be an inadequate assumption in some cases. In

fact, Borgatti [11] has discussed the importance of correct

assumptions regarding signal flows and how they should

depend on specific types of networks. Specifically, what the

node entities represent and how the nodes communicate

should be considered precisely when measuring informa-

tion flow in the network.

Another important consideration is whether centrality

can represent the complexity of a network structure. The

shortest-path-based measures often miss this network

property. For example, in our sample network (Fig. 1), node

9 has a zero Freeman betweenness value, while the other

centrality measures give relatively high scores to the node.

Moreover, the Freeman closeness centrality for node 9 may

not change when the complexity of the two modules on

either side increase or decrease. Therefore, we considered

centrality measures based on random walks or paths

(Table 1), approaches that can more properly represent

network complexity, as shown in the example in Fig. 1.

2.4 Development of new centrality measures based

on random walks

Although a betweenness centrality measure based on

random walks has been developed by Newman [12], we

developed the more intuitive centrality measures, rw_bet

and rw_clo, calculated in the same manner as shortest path

betweenness and closeness, respectively. In essence, our

method is similar to the ‘‘absorbing model’’ presented by

Figure 1. (A) Toy network example for understanding different

centrality measures. (B) Heat map of centrality measures in the

example network (red color means high centrality).
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Stojmircivic and YU [13], specifically an absorbing random

walk of Newman [12], in that we assumed that a sink node

ends signal transition.

We calculated expected visiting time for every node when

starting signal flows by random walking until an absorbing

node (or sink node) was reached. Using the expected visiting

time for every node, rw_bet measures how many times the

node was visited as an intermediate node for all pairwise signal

transmissions. On the other hand, rw_clo measures how

many walk-steps were needed to arrive at every other node

from a given node, a value that is closely related to closeness

centrality (for more details, see the Supporting Information

material, Supp1). In the example network (Fig. 1), the rw_bet

centrality of node 9 has a high value, while the rw_clo

centrality of the same node has a low value. In addition, the

subgraph centrality shows localized scores, which may be

influenced by the scaling effect based on distance (by the

factorial of the order of the spectral moment) [14].

Importantly, the walk- (or path-) based measures that

consider multiple signal trajectories compute somewhat

different scores than the shortest-path-based measures.

Because the walk-based signal choose each step randomly,

the nodes having high connectivity (or the nodes near the

highly connected nodes) usually display high scores. In

other words, the walk-based measures, rw_bet and rw_clo,

consider the complexity of network topology and concep-

tually correspond to well-known betweenness and closeness

centrality. The only difference between these methods is

whether the signal propagates along the shortest path or a

random walk. Thus, rw_bet and rw_clo can be applied for

other uses, and interpretation of their calculations is

dependent on the specific problem.

2.5 Network centrality measures for hubs or hub-

relatedness

In addition to typical ASS and degree (ASS is a centrality

measure about degrees of neighbor nodes) centrality, we

developed a hub-related measure designated ‘maxdeg’. It

finds a node having the maximum degree in an extracted

sub-network around a specified node. The maximum degree

is divided by the shortest path length to that node from a

specified node. Therefore, ‘maxdeg’ represents how closely a

specified node is located to a hub node. As the maximum

degree becomes larger and distance becomes shorter, the

measure has a higher value. This measure was used to test

whether essential nodes are located near hubs.

2.6 Yeast–protein interaction networks used in this

study

We used two yeast protein interaction networks that were

constructed with two different techniques (Supporting

Information, Supp2). As previously described, these two

networks exhibit different aspects of the total protein inter-

action map. Briefly, the Y2H network (union of Uetz-screen

[15], Ito-core [16], and CCSB-YI1 [7]) was constructed from

binary physical interactions and contained a large number

of transient interactions. The AP/MS network (combined-

AP/MS data set [17, 18]) was largely composed of co-

complex machineries. In this study, we used the largest

connected components of the two networks, resulting in 356

essential nodes from 1647 total nodes in the Y2H network

and 401 essential nodes from 1004 total nodes in AP/MS

network. In addition, the mean clustering coefficient, which

measures connectivity of neighboring nodes, is very differ-

ent for the two networks, 0.17 for the Y2H network and 0.72

for the AP/MS network.

2.7 Classification for essential protein prediction

The random forest approach, developed by Leo Breiman [19]

and Adele Cutler, was to test classification capability for

essential proteins. A random forest is a collection of tree-

based classifiers where each tree construction depends on

the independent feature-sampling procedure. The voting

results from the ensemble of decision trees are used to

determine the most popular objective class. For more details

about the Random forest, see Breiman’s study [19]. The

random forest classifier has been shown to be relatively free

from the over-fitting problem, as compared with other

machine learning methods, making this approach the most

appropriate for our performance test. In addition, the

random forest performs a type of cross-validation in parallel

with the training step by using the out-of-bag (OOB) error

estimate. Specifically, the left-out samples (about one-third

of samples) after bootstrapping in the training step consti-

tute OOB samples. Because OOB samples have not been

used in the tree construction, they are used to estimate test

set errors (OOB error). We investigated the maximum

performance in classifying essential proteins using only

network centrality. The classification of ‘Common’ (Table 2)

was performed by combining all network centrality

measures for the AP/MS and Y2H networks.

The variable importance measure of the random forest

classifier can be useful in finding influential network

centrality as related to essentiality. In this study, measure-

ment of variable importance was based on the Gini index

(mean decrease in node impurities from splitting on the

variable) obtained from all classification trees (forest).

3 Results and discussion

3.1 Enrichment of essential proteins in high-rank

nodes by different centrality measures

We calculated 40 network centrality measures for the two

yeast–protein interaction networks, Y2H and AP/MS. Our
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results indicate that the statistics of the two networks are

substantially different. In the case of the Y2H network, some

network centrality measures, including l2_maxdeg, l2_eig,

l4_rw1, l4_eig, l2_s_bet, ASS, and l3_info (see Table 1 for

centrality naming), showed better correlation with essentiality

than the other measures (i.e. the nodes with higher scores for

those centrality measures were more likely to be essential)

(Fig. 2A and B). For example, 50% of the nodes with the top

1% of l2_eig scores were essential nodes, a much higher

percentage than in a random set (21.6%). However, most

centrality measures were not significantly correlated with

essentiality. That is, the percentage of essential proteins

among high-rank nodes (for example, up to 50th rank in Fig.

2B) for many centrality measures was about 40%, but those

percentages decreased rapidly to a level similar to randomly

chosen sets of nodes (21.6%). We also found that those

centrality measures showing better correlation with essenti-

ality were not correlated with each other, indicating that high-

rank nodes for each centrality measure were not overlapping

and that essentiality cannot be explained by one dominant

factor. Together, these data indicate that there is no single

best centrality measure, among the 40 measures tested, for

predicting essentiality in the Y2H network.

In the case of the AP/MS network, the high-ranked nodes

identified by the l2_info were the most highly correlated with

essentiality and the l4_info performed second best (Fig. 2C

and D). In the case of the l2_info, 90% of the top 1% nodes

were essential, a much higher percentage than in a random

set (39.9%). Similar to the Y2H network, most centrality

measures showed low performance, with essentiality classifi-

cation performance close to that of random sets. Among all

information centrality measures, l2_info performed better

than l3_info or l4_info. However, when considering more

than the top 100 ranked nodes, the accuracy of l2_info

decreased drastically (Fig. 2D). When the top 300 nodes

identified in the AP/MS network by l2_info were considered,

the accuracy decreased to 50%. These results suggest that the

different centrality measures cover different regions for

essentiality, although all measures performed better than

random selection.

3.2 Classification using centrality measures

A random forest classifier was used to test whether essential

proteins could be predicted from network centrality

measures alone. Each node was represented by a feature

vector composed of 40 network centrality measures, which

was then used as an input vector for a random forest clas-

sifier (Table 2). In the Y2H network, the classification

results showed very low performance in predicting essential

proteins. The error rate was 96% for essential nodes, indi-

cating that network centrality has no ability to predict

essentiality. On the other hand, the classification result in

the AP/MS network showed better performance. Of the 401

essential proteins, 270 nodes were correctly predicted

(67.4%), and the OOB estimate of the error rate (see

Section 2) was 21.91%. It should be noted that the primary

reason for performing this classification procedure was to

validate the relationship between network topology and

essentiality, rather than to construct a precise classifier

model for other uses. In this study, the OOB error rate,

which is conceptually comparable to the cross validation

procedure, is used to access the capability of our classifier

model to explain the data.

Because classification performance was reasonable in the

AP/MS network, influential variables in classification were

listed by importance measure of the random forest classifier.

Variable importance was based on the Gini index, repre-

senting the mean decrease in node impurities from splitting

on the variable (see Section 2). The most important variable

was l4_info, followed by ASS, info, l3_info, l2_info, and

degree in decreasing order. The network centrality measures

showing different distributions of essential and non-essen-

tial nodes could be useful for classification. The p-values

calculated by two-sampled t-test estimation of the different

mean values of the two distributions indicated statistical

significance for those influential centrality measures:

p-value of ASS: 0.08, l2_info: 4.839e-14, l3_info: 2.2e-16,

l4_info: 2.2e-16. This result suggests that these information

centrality measures are superior to the others for predicting

essentiality.

Table 2. Classification performances by the random forest classifiers

Network (]Essential/]Non) ] feature OOB error Confusion matrix

Y2H (356/1647) 40 25.72% Essential Non Error
Essential 14 336 0.96
Non 77 1179 0.06

AP/MS (410/1004) 40 21.91% Essential Non Error
Essential 270 131 0.32
Non 89 514 0.14

Common (139/333) 80 21.62% Essential Non Error
Essential 95 44 0.31
Non 28 166 0.14

AP/MS (410/1004) 6 23.31% Essential Non Error
Essential 268 133 0.32
Non 101 502 0.14
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We also tested classification accuracy considering only

those top six centrality measures in the AP/MS network (see

the fourth row in Table 2). The classification accuracy by the

OOB estimate was 76.69% and the sensitivity was 67.3%

(268/401), similar values to those of the classifier using

all centrality measures. This result suggests that sub-

networks of different lengths provide different information

and that considering them together is helpful for inferring

essentiality.

3.3 The size of sub-network affects the prediction

accuracy

Comparing the patterns obtained from application of

conceptually similar measures to sub-networks of differing

size can be helpful in examining the effect of sub-network

size and understanding meaningful internal network

structure. In the Y2H network analysis, the l2_info measure

correlated more poorly with essentiality than either l3_info

or l4_info, implying that the nearest neighbors provide little

information for predicting centrality. This result also

implies that the appropriate network size for revealing

essentiality in Y2H network should be at least 3. In other

words, the essentiality information of the Y2H network is

encoded in longer-ranged sub-networks.

In contrast, the results observed in the AP/MS were

somewhat different. All localized information centrality

measures showed good discrimination. While l2_info fit

best to more high-scoring nodes (up to 100th rank), l3_info

and l4_info fit well to mid-range nodes (after 100th rank).

Surprisingly, global information centrality measures

showed similar patterns to degree centrality, with no

discriminatory patterns regarding essential nodes. In fact,

global measures performed worse than random selection in

some ranges. Thus, we can infer that local sub-networks

provide sufficient information to estimate essentiality, and

that the global centrality is often not ideal for predicting

essentiality. One plausible explanation for these results is

that the network nodes are not sampled uniformly or

sufficiently. While global centrality measures would be

severely affected by the sampling problem, localized

centrality measures are relatively free from this issue. Our

results suggest that global centrality measures should only

Figure 2. Heat map showing the fraction of essential nodes among high-rank (up to 50th) nodes by different centrality measures in (A) the

Y2H network and (C) the AP/MS network. Line plots of a few measurements in (B) the Y2H network and (D) the AP/MS network.
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be used when network nodes are sampled uniformly and

sufficiently from the entire population. In the case of

insufficient sampling, global measures may give incorrect

information and a well-devised local centrality measure may

be a better solution in these cases.

3.4 Localized path-based information centralities

have the best correlation with essentiality

For both networks, information centrality measures were

the best predictors of essential proteins. Although many

centrality measures that involved different network proper-

ties were tested for their relationships with essentiality,

localized information centrality measures were the only

metric that showed reasonable prediction accuracy. Infor-

mation centrality is based on multiple paths, not random

walks or the shortest path. It considers all paths from a

source node to a target node, and the paths are weighted by

their distance [20]. Similarly, the random walk-based

centrality measure (rw_bet) traces a random walk from the

source node to the target node. The critical difference

between path-based and walk-based measures is that the

walk-based measures give much higher scores to the highly

connected nodes than path-based measures do because a

path does not visit the same edge or the same node multiple

times. In very extreme cases, random walks can go back and

forth infinitely, giving much higher scores to high degree

nodes that form large dense clusters. However, path-based

measures detect local modular centers and simultaneously

consider environmental complexity, so that they are not

affected by dense clusters in the same way that other

centrality measures are.

Global positions in the AP/MS network may provide

some intuition about why path-based information central-

ities correlate well with essentiality. In Fig. 3, those nodes

ranked highly by four different centrality measures are

represented by a red color. The network displays dense and

large hub nodes in the global center (Fig. 3B), and the

degree centralities of these nodes are very high (Fig. 3A).

Therefore, most centrality measures give high scores to the

nodes belonging to this cluster. For example, the centrality

measures assuming ideal path (shortest path) cannot

capture the complexity, and as a result, do not represent

essentiality well (Fig. 3C). In addition, the centrality

measures assuming random walks focus mainly on the

central cluster, due to its large number of complex

connections. However, the localized information centrality

gives high scores to the local highly connected nodes, as well

as to the central hub nodes (Fig. 3D). These differences

between centralities may arise from the different assump-

tions about signal transmission. As described by Zotenko

et al., [8] the critical feature revealing essentiality is the

node’s local neighborhood, rather than its global position.

The main difference between our work and theirs is that we

considered a longer range when defining local modules and

have estimated essentiality by using only centrality within

the modules.

Figure 3. Topological positions of the top 50

nodes (red) for (A) degree, (B) info, (C) s_bet

and (D) l2_info centralities in the AP/MS

network.
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Topologically, attacking the central dense cluster would

effectively perturb the global network and should be suffi-

cient to damage important network functions. However,

these perturbation effects on local dense clusters cannot be

explained if we assume that all signals in the network flow

along the shortest paths. If we assume that signal trans-

missions travel by random walks, or along multiple paths,

the importance of local dense nodes increases as shown in

our toy example network (see n5 in Fig. 1). The center nodes

in highly dense clusters have high impact on global struc-

ture in the centrality measures that assume random walks

or paths (e.g. rw_bet, info in Fig. 1B). In addition, the

shortest path is not a realistic measurement for describing

communications in protein interaction networks because

signals would be transmitted along all possible paths,

through all possible neighbors, not along the single ideal

route. For those signals traveling only through the ideal

route, information about the ideal path should be known in

advance. Furthermore, because of the static co-complex

nature of the AP/MS network, the nodes in each cluster

tend to perform similar functions together. Therefore, local

dense clusters may act as important messenger modules for

transmitting functional signals.

3.5 Network clustering analysis using centrality

measures

To further investigate the relationship between network

topology and gene essentiality, we performed k-means

clustering analysis for the Y2H and AP/MS networks. As in

the classification procedure, different centrality measures

were used for representation of the network nodes. Because

groups of nodes in the resulting clusters share common

topological features within the same clusters, we used these

clusters to test whether the specified groups could represent

essentiality.

Although the classification performance for the Y2H

network was poor, we presumed that a more specified

network cluster might reveal network topology related to

essentiality. However, k-means clustering (using k 5 5, 7)

results indicated that the essentiality proportion in the clus-

tered groups was very close to random groups for most

clusters (Table 3), indicating that essentiality (or non-essen-

tiality) is unlikely to be encoded in the Y2H network topology.

The global map of the Y2H network can be rewired in time

and space, as a response to dynamic environmental forces.

Therefore, to identify connections between essentiality and

network topology, we may need to study a series of specific

snapshots of the network, not the static interaction map that

considers all possible interactions together.

In contrast, essentiality in the AP/MS network seemed to

show some network characteristics arising from global

positions of high rank nodes identified with the lx_info

measure (compare the high-rank nodes in Fig. 3D with

essential nodes in Fig. 4A). The clustering results for the

AP/MS network show that the proportion of essential nodes

in some clusters is much higher (or lower) than in randomly

selected groups (Fig. 4B, Table 3). Surprisingly, the

proportion of essential genes in the g3 cluster (using k 5 7)

is low (27.9%), even though this cluster contains many hub

nodes. The mean degree of nodes of the g3 cluster is 125.86

and the node with the largest degree, 254, is a member of

this cluster. In addition, 85.9% of the nodes with degree

greater than 87 belong to the g3 cluster. Our findings and

analysis of the g3 cluster suggests that high degree nodes or

globally centered nodes are not necessarily related to

essential genes. This feature may be the primary reason that

prevents most centrality measures from accurately predict-

ing essential nodes.

3.6 Functional implications of network clusters

We performed Gene Ontology (GO) analysis on the seven

clusters of the AP/MS network to identify functional rela-

tionships of each network cluster that might connect

specific network topology to particular biological functions

Table 3. Proportion of essential genes in each cluster constructed through the k-means clustering method

] cluster Arbitrary cluster name Essentiality (%) in Y2H(356/1647) Essentiality (%) in AP/MS(401/1004)

K 5 7 g1 22(43/192) 36.5(76/208)
g2 19.7(70/356) 68.8(66/96a)

g3 29.8(20/67) 27.9(24/86)
g4 29.7(33/111) 66.3(59/89)a)

g5 17.9(70/391) 38.3(67/175)
g6 22.4(98/438) 24.7(67/271)
g7 23.9(22/92) 53.2(42/79)a)

K 5 5 g1 21.5(67/311) 59(85/143)a)

g2 19.4(103/530) 24.9(67/269)
g3 21(117/555) 39.3(162/412)
g4 28.8(36/125) 67.7(63/93)a)

g5 26.2(33/126) 27.6(24/87)

a) Represents the cluster of high essentiality.
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as well as essentiality. The term enrichment tool of AmiGO

[21] (the official tool for searching and browsing the GO

database) was used to find significantly shared GO terms in

a given gene list. The gene lists for each cluster were used as

query gene products and all genes in the AP/MS network

were used as a background set. The p-value, a significance

measure of overlapping GO terms, was determined by

considering the sample frequency and the background

frequency. Among the top five GO terms (by non-decreas-

ingly ordered p-values), only the terms with more than 40%

sample frequency (i.e. covering more than 40% nodes within

the corresponding cluster) were considered in this study.

The cases in which no terms satisfying the above criteria

were identified are denoted in the tables by ‘No term’.

Because GO terms are categorized into biological process,

cellular component, and molecular function, we calculated

significant GO terms for each category (Tables 4 and 5).

Among the seven clusters from the AP/MS network, the

g3 and g6 clusters showed low proportions of essential

genes. The g3 cluster, which included many nodes with very

high degrees located at the global center, was enriched for

the following common GO terms: ‘translation’, ‘cellular

protein metabolic process’, and ‘cellular biopolymer

biosynthetic process’ in the biological process category,

‘cytosolic ribosome’ and ‘cytosolic part’ in the cellular

component category, and ‘structural constituent of ribo-

some’ and ‘structural molecule activity’ in molecular func-

tion category (Tables 4 and 5). These enrichments suggest

that the proteins in the g3 cluster are mainly located in the

cytoplasm and generally involved in the chemical reactions

and pathways involving a specific protein. The nodes

involved in translation (g3 cluster) formed a large highly

connected cluster, but they were unlikely to be essential

genes. In addition, the nodes of the g6 cluster were enriched

for the ‘biological regulation’ term in the biological process

category and no significant terms in other GO categories.

In contrast to the g3 and g6 cluster, genes in the g2, g4,

and g7 clusters, all of which show a high proportion of

essential genes, were enriched for GO functions suggesting

nuclear components and generally performed functions at

the transcription level (g2 cluster: ‘‘RNA splicing’’, g4 clus-

ter: ‘‘ncRNA processing’’, ‘‘ribosome biogenesis’’, g7 cluster:

‘‘ribonucleoprotein complex’’, ‘‘ribosome biogenesis’’).

In summary, essential nodes tend to perform functions

at the transcriptional level in the nucleus, while non-

essential nodes are more likely to be involved in biological

regulation or translation in the cytosol. Moreover, our

results suggested that some network groups (e.g. the g2 and

g4 clusters) are closely related to specific biological func-

tions, especially biological processes in GO categories.

3.7 Putative classification model for essential nodes

in the AP/MS network

Our classification results implied that some topological

features are related to essentiality even though they may not

be revealed through a single high centrality value. Based on

this point of view, the random forest classifier has a short-

coming, in that it is difficult to understand the topology of

essential nodes clearly due to the intrinsic complexity of the

machine learning technique. Therefore, we constructed a

tree-based model using centrality measures that would

provide clearer interpretation in terms of network topology.

We utilized the essentiality classification model using a

decision tree method and excluding the g3 cluster. Results

of this model suggests that essential nodes tend to be loca-

ted in dense local clusters (l3_SC4 –0.64 and ASSo1.69)

and not at the edge of the network (info40.56) (Fig. 5). The

criterion values for each centrality measure were scaled by

subtracting sample means and dividing by standard devia-

tions. The inequality about the global information centrality,

info, suggests that the majority of essential nodes tend to be

located at or near the global center of the network. In

addition, high l3_SC and low ASS values represent

highly connected environments and low degrees of neigh-

boring nodes, attributes that together form a dense local

cluster.

Figure 4. (A) Essential nodes (red) in

the AP/MS network. (B) The seven

clusters identified through k-means

clustering methods are represented

by different colors (cyan: g1, blue: g2,

pink: g3, red: g4, yellow: g5, green:

g6, black: g7).
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The proportion of essential genes in the g6 cluster (using

k 5 7) is also low (24.7%) and the cluster is topologically

located at the border of the AP/MS network. The inequality

conditions, l3_SCo–0.8 and l2_rw_beto–0.486, represent

246 nodes of the 271 total nodes of the g6 cluster. Because

both l3_SC and l2_rw_bet are local centrality measures,

these negative values indicate that the g6 cluster is located at

the edge of the network. Taken together, our data show that

in the AP/MS network, essential nodes tend to be found in

dense local clusters not located at the edge of the network,

but at the local centers that connect neighbor clusters.

4 Concluding remarks

In this study, we investigated whether essential proteins could

be inferred from network centrality alone. Further, we studied

which centrality measures described gene essentiality well.

The underlying assumption of our investigation was that the

various centrality measures make their own assumptions

about signal transmission and that particular centrality

measurements would reveal characteristic topological features.

A more thorough analysis of those centrality measures that

properly reveal node essentiality would be helpful for under-

standing essentiality in terms of network topology.

As shown by a previous study [7], the two networks, Y2H

and AP/MS, which were constructed using different

experimental techniques, showed distinct topological

features. Accordingly, we expected that the two networks

would represent different aspects of the protein interaction

map and might display different capacities to reveal essen-

tiality from topology. In our results, various network

centrality measures of the Y2H network seemed to have

little utility at predicting essential nodes (Fig. 2). Our find-

ing is consistent with recent experimental results indicating

that degree centrality is closely related to the phenotypic

variance, but not to essentiality [7]. The inability of the Y2H

network to predict essentiality may be the result of insuffi-

cient network data or the fact that Y2H techniques may not

effectively predict essentiality. On the other hand, the

topological centrality of the AP/MS network explains

essentiality to a greater extent. Because of the co-complex

nature of the AP/MS network, nodes tend to form modular

dense clusters. These topological features of this type of

network may be more apt at revealing essential nodes.

Our results suggest that path-based and localized infor-

mation centrality measurements predict essentiality in both

networks. Conversely, our findings imply that global

centrality measures and hub-related measures might be not

appropriate for revealing essentiality. Moreover, localized

Table 4. Significant GO terms (biological process) for the seven clusters

Cluster GO p-Value Sample frequency Background frequency

g1 GO:0006996 organelle organization 1.29e�17 107/204 (52.5%) 272/984 (27.6%)
GO:0006351 transcription, DNA-dependent 2.34e�15 92/204 (45.1%) 228/984 (23.2%)
GO:0032774 RNA biosynthetic process 2.34e�15 92/204 (45.1%) 228/984 (23.2%)
GO:0006350 transcription 4.76e�15 92/204 (45.1%) 230/984 (23.4%)

g2 GO:0000377 RNA splicing, via transesterification
reactions with bulged adenosine as nucleophile

2.17e�24 39/96 (40.6%) 71/984 (7.2%)

GO:0000398 nuclear mRNA splicing, via spliceosome 2.17e�24 39/96 (40.6%) 71/984 (7.2%)
GO:0000375 RNA splicing, via transesterification reactions 2.17e�24 39/96 (40.6%) 71/984 (7.2%)
GO:0008380 RNA splicing 8.98e�24 39/96 (40.6%) 73/984 (7.4%)
GO:0006397 mRNA processing 1.10e�20 41/96 (42.7%) 94/984 (9.6%)

g3 GO:0006412 translation 3.23e�27 71/83 (85.5%) 304/984 (30.9%)
GO:0044267 cellular protein metabolic process 9.12e�13 71/83 (85.5%) 487/984 (49.5%)
GO:0019538 protein metabolic process 1.36e�12 71/83 (85.5%) 490/984 (49.8%)
GO:0034961 cellular biopolymer biosynthetic process 3.03e�11 72/83 (86.7%) 529/984 (53.8%)
GO:0034645 cellular macromolecule biosynthetic process 5.56e�11 72/83 (86.7%) 534/984 (54.3%)

g4 GO:0034470 ncRNA processing 3.74e�22 50/87 (57.5%) 150/984 (15.2%)
GO:0042254 ribosome biogenesis 1.45e�21 65/87 (74.7%) 274/984 (27.8%)
GO:0022613 ribonucleoprotein complex biogenesis 3.69e�21 69/87 (79.3%) 318/984 (32.3%)
GO:0006364 rRNA processing 1.67e�20 47/87 (54.0%) 141/984 (14.3%)
GO:0044085 cellular component biogenesis 7.91e�17 71/87 (81.6%) 392/984 (39.8%)

g5 No term

g6 GO:0065007 biological regulation 3.45e�14 141/266 (53.0%) 334/984 (33.9%)
GO:0050789 regulation of biological process 2.98e�10 126/266 (47.4%) 313/984 (31.8%)
GO:0050794 regulation of cellular process 3.60e�10 124/266 (46.6%) 307/984 (31.2%)

g7 GO:0022613 ribonucleoprotein complex biogenesis 2.98e�16 59/78 (75.6%) 318/984 (32.3%)
GO:0042254 ribosome biogenesis 1.67e�11 49/78 (62.8%) 274/984 (27.8%)
GO:0044085 cellular component biogenesis 2.37e�11 59/78 (75.6%) 392/984 (39.8%)
GO:0006396 RNA processing 3.52e�09 42/78 (53.8%) 238/984 (24.2%)
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information centrality measures covering different ranges

provide relevant information about essential nodes. The

localized centrality measures that assume ideal paths or

random walks show weaker correlations with essentiality

than the information centrality measures. That is, those

centrality measures that represent environmental complex-

ity and consider the local sub-network around a particular

node are a better measurement for predicting essential

nodes in the protein interaction network, especially in the

AP/MS network. Based on our finding that localized infor-

mation centrality measures contain the most relevant

information for predicting essentiality, we infer that local

dense clusters tend to contain essential nodes, as the effects

of perturbation on the clusters could be substantial under the

plausible assumption that signal flows through multiple

paths utilizing its neighboring environments, and not by a

single shortest path. Furthermore, the results from our

clustering analysis indicate that specific biological processes

Table 5. Significant GO terms (cellular component and molecular function) for the seven clusters

Cluster GO (cellular component) p-value Sample frequency Background frequency

g1 GO:0044451 nucleoplasm part 6.26e�23 97/204 (47.5%) 205/984 (20.8%)
GO:0005654 nucleoplasm 1.35e�21 98/204 (48.0%) 215/984 (21.8%)
GO:0043233 organelle lumen 4.56e�20 142/204 (69.6%) 407/984 (41.4%)
GO:0070013 intracellular organelle lumen 4.56e�20 142/204 (69.6%) 407/984 (41.4%)
GO:0031974 membrane-enclosed lumen 1.60e�19 142/204 (69.6%) 411/984 (41.8%)

g2 GO:0044428 nuclear part 1.01e�09 73/96 (76.0%) 462/984 (47.0%)
g3 GO:0022626 cytosolic ribosome 6.55e�53 65/83 (78.3%) 115/984 (11.7%)

GO:0044445 cytosolic part 1.29e�44 65/83 (78.3%) 143/984 (14.5%)
GO:0033279 ribosomal subunit 1.97e�40 65/83 (78.3%) 161/984 (16.4%)
GO:0005829 cytosol 1.37e�39 65/83 (78.3%) 165/984 (16.8%)
GO:0005840 ribosome 5.46e�38 68/83 (81.9%) 196/984 (19.9%)

g4 GO:0005730 nucleolus 3.09e�26 53/87 (60.9%) 145/984 (14.7%)
GO:0030684 preribosome 2.96e�25 46/87 (52.9%) 109/984 (11.1%)
GO:0043228 non-membrane-bounded organelle 9.00e�15 73/87 (83.9%) 446/984 (45.3%)
GO:0043232 intracellular non-membrane-

bounded organelle
9.00e�15 73/87 (83.9%) 446/984 (45.3%)

g5 No term
g6 No term
g7 GO:0030529 ribonucleoprotein complex 1.07e�12 60/78 (76.9%) 382/984 (38.8%)

Cluster GO (molecular function) p-value Sample frequency Background frequency

g1 No term
g2 GO:0003824 catalytic activity 2.08e�08 60/96 (62.5%) 353/984 (35.9%)
g3 GO:0003735 structural constituent ofribosome 9.45e�42 65/83 (78.3%) 155/984 (15.8%)

GO:0005198 structural molecule activity 1.42e�38 65/83 (78.3%) 170/984 (17.3%)
g4 No term
g5 No term
g6 No term
g7 No term

Figure 5. (A) Essentiality model

using the decision tree classifica-

tion method. The majority of

essential nodes are represented

by red arrow paths and the

majority of non-essential nodes

by blue arrow-paths. ‘E’ denotes

essential nodes and ‘N’ denotes

non-essential nodes. The

numbers in the leaf nodes repre-

sent ‘(number of essential

nodes)/(number of non-essential

nodes)’. (B) The network view of

the nodes that belong to the left

red arrow path (represented by

violet colors).
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are consistent with specific network clusters, suggesting

a close relationship between specific network topology

and biological function. In conclusion, despite recent

controversy regarding the relationship between centrality

and essentiality, our study demonstrates that cellular func-

tions, including essentiality, are closely related to network

topology.
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