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Background: One of the most recent and important developments in drug

discovery is a new drug development approach of building and analyzing

networks that contain relationships among drugs and targets, diseases, genes

and other components. These networks and their integrations provide useful

information for finding new targets aswell as new drugs.Objective: This review

article aims to review recent developments in various types of networks and

suggest the future direction of these network studies for drug discovery.

Methods: Databases and networks are integrated into a more complete net-

work to better present the relationships among drugs, targets, genes, pheno-

types and diseases. After discussing the limitations and obstacles of the recent

research, we suggest several strategies to build a successful and practical drug–

target network. Results/conclusion: A useful, integrated network can be built

from various databases and networks by resolving several issues, such as limited

coverage and inconsistency. This integrated network can be completed by the

prediction of missing links, biological network comparison and drug target

identification. Possible applications are multi-target drug development, drug

repurposing, estimation of drug effect on target perturbations in the whole

system and extraction of the suitable purpose of the drug–target sub-network.

Keywords: drug–disease network, drug–target network, network analysis, network integration,

target identification
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1. Introduction

Due to the exponential increase in biological, chemical and interaction data by
advanced high-throughput experimental techniques, there is an increasing demand
on integrating these data for developing a new drug in a more efficient manner. One
such example is a drug–target network [1-5] that helps to find both new drug targets
and effective new drugs at a lower cost. Along with the construction of a drug–target
network, other types of networks, such as drug–disease networks, drug–side effect
networks and drug–molecular fragment networks, have been developed by various
researchers [6,7]. Similar to these types of graphs are drug–drug networks. For
instance, the use of quantitative structure–activity relationship models to construct
drug–drug networks of antiviral drugs [8] and anti-fungal compounds [9]. The links
in these networks connect drug–drug pairs, and the information contained in the
link is related to the activity of the drug for different targets. In this sense, the
networks mentioned above are drug–target networks as well.

These networks can be used for the following: i) to construct the whole network
by inferring missing links from the information of known links; ii) to find new drug
targets; iii) to infer potential side effects from the network; iv) to reposition existing
drugs; v) to design multi-target drugs that interact with only effective targets; vi) to
design an effective drug combination that can maximize the efficacy of targeting
disease; and vii) to find new relationships among disease, treatment, patients, targets,
drugs and genes.
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We start our review by introducing the ‘central dogma of
drug action’, shown in Figure 1A. It states that a single, or
multiple drugs, interact with appropriate single or multiple
target protein(s); thus, as a result disease can be modulated.
Based upon these steps of drug action, it is clear that not only
information on individual biological components (such as
drugs, genes, proteins, cell types and diseases), but also
information on the component relationships is essential to
understanding the whole process.
Undoubtedly, the most important aspect of the entire drug-

action process is the drug-target–disease relationship. How-
ever, it is also critical to have an appropriate understanding of
phenotypic context during this process. There are four dis-
tinctive types of biological states that determine a specific
phenotypic context: genomic, proteomic, metabolomic and
cellular states. Figure 1B shows the relationships between drugs
and disease in terms of phenotypic context. Genomic context
specifies a particular genomic state, including epigenetic state
and genetic variations that govern the gene expression level of
all genes. Proteomic context is determined by the expression
level of all proteins, including different isoforms with specific
post-translational modification. Metabolomics is the study of
small-molecule metabolite profiles and the collection of all
metabolites in a biological organism. Cellular context is a
defined cellular state of a specific tissue type at a particular
disease state. The perturbation of disease state by a drug can be
detected by genetic profiling data; this perturbation changes
the disease state through genetic pathways. Most drugs also
affect disease state by interacting with proteins. The primary
effect of this interaction is to change a specific disease state
through protein pathways by modulating disease-related pro-
teins (target proteins). However, modulation of adverse drug
reaction (ADR)-related proteins can cause unexpected drug–
protein interactions. Information regarding drug action in a
cell is useful for testing drug efficacy and toxicity. The real
drug action in the human body can be predicted from this
in vitro data using in vivo–in vitro correlation techniques.
In this article, we aim to review useful biological and

chemical databases for building complete and effective
drug–target networks, in addition to recent work pioneering
the modeling of drug–target networks and other drug-related
networks. Based on the drug–disease relationship diagram
(Figure 1), we introduce databases for each component and
each relationship. Drug–target networks and other drug-
related networks can be built from the interaction data. After
introducing current research, we discuss limitations of this
work and the future direction of drug–target network research.

2. Databases to build drug–target and other
drug-related networks

A network consists of nodes and links. To create drug-related
networks, it is necessary to collect information on drugs, genes,
protein targets and diseases as nodes and their interactions as
links. Table 1 summarizes several representative databases.

2.1 Databases for drugs, proteins, phenotypes and
diseases
Information for chemicals can be obtained from various
sources. The representative databases are PubChem, Drug-
Bank, ChemBank and KEGG LIGAND. PubChem [10] pro-
vides information on chemical structures and their biological
activities. Using PubChem, one can find information on
chemical probes discovered by high-throughput screening of
small molecules that modulate the activity of gene products.
DrugBank [11] is a knowledge-based database that combines
detailed drug data with comprehensive drug action and drug
target information. It contains nearly 4800 drug entries
including > 1350 FDA-approved small molecule drugs, 123
FDA-approved biotech drugs, 71 nutraceuticals and > 3243
experimental drugs. ChemBank [12] and KEGG [13] LIGAND
also contain public information about chemical substances,
reactions and other chemoinformatics resources.

Drug targets are typically proteins whose activities are
modulated by specific chemicals. The Protein Data Bank
(PDB) and the SWISS-PROT are the most widely used
databases for the structures and sequences of proteins, respec-
tively. PDB [14] was established in 1971 and it contains an
archive of information about experimentally determined 3D
structures of proteins, nucleic acids and complex assemblies.
SWISS-PROT [15] is a manually curated protein sequence
database that has been valued for its high quality annotation
and the use of standardized nomenclature.

In addition to the primary sequence and structure data-
bases, there are several databases that provide information on
specific proteins that interact with drugs, target proteins and
diseases. For example, TTD [16] provides information about
the known and explored therapeutic protein and nucleic acid
targets, the targeted diseases, pathway information and the
corresponding drugs/ligands. TargetDB [17] provides the sta-
tus information on target sequences and tracks their progress
through the various stages of protein production and structure
determination. PDTD [18] is a database containing current
and potential drug targets with known 3D structures; it
contains 1207 entries covering 841 drug targets. SuperTar-
get [19] integrates drug-related information about medical
indication, adverse drug effects, drug metabolism, pathways
and Gene Ontology terms of the target proteins. TPDB [20] is
a comprehensive, curated, searchable, documented compila-
tion of publicly available information on the protein targets of
reactive metabolites of 18 well-studied chemicals and drugs
of known toxicity. Although it seems relatively small, it is a
good example of how other databases should be designed in
the future.

Other databases cover information on specific proteins that
induce ADRs. DITOP [21] includes information on drug-
induced toxicity related proteins (DITRPs) that mediate
toxicity through their interactions with drugs or reactive
metabolites. Currently, it contains 618 literature-reported
DITRPs, 529 drugs and 418 toxicities. DART [22] provides
comprehensive information about adverse effects of drugs
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described in the literature and potential targets involved in
ADR that are not yet confirmed. It gives the physiological
function of each target and corresponding ADRs induced
by drug–target binding. MDL toxicity database [23] is serviced
by MDL Information Systems, Inc. and it offers chemical
structure-based access to data on > 150,000 known toxic
substances. Although this system provides the potential tox-
icological profile of drug candidates under investigation in a
very large scale, it is not public.

Genetic profiling and cellular experimental results are useful
phenotypes for building networks, such as drug–gene net-
works and disease-related gene networks. The Connectivity
Map project by the Broad institute created a reference col-
lection of gene-expression profiles on human cell lines treated
with bioactive small molecules [24]. It contains > 7000 expres-
sion profiles representing 1309 compounds. In addition, Gene
Expression Omnibus (GEO) [25], ArrayExpress [26] and
NCI60 [27,28] provide genetic profiles of microarray experi-
ments. GEO and ArrayExpress contain abundant gene expres-
sion data under various biological conditions, while NCI60 is
a specified archive for screens of tumors. The NCI60 database
offers both gene expression profiles and drug activity patterns
against 60 human cancer cell lines, which contain both genetic
and cellular profiles. It can be used to build both individual
networks (i.e., drug–gene networks and drug–cell networks)
and an integrated network from various individual networks.

Online Mendelian Inheritance in Man (OMIM) [29] is a
comprehensive and authoritative compendium of human
genes and disease. It contains information on all known
mendelian disorders for > 12,000 genes.

2.2 Databases for the interactions among drugs,
proteins and diseases
In a drug–target network, biological components (i.e., drugs,
proteins, genes and diseases) are represented by nodes; it is

necessary to link nodes by edges based on the relationships
between them. Several databases offer information on these
interactions on a large-scale. DrugBank and TTD provide a
list of drugs targeting proteins with information on related
diseases. SuperTarget provides a list of target proteins found
by searching the database with the information of a query
drug (i.e., adverse drug effect and structural similarity).
STITCH [30] is a resource to explore known and predicted
interactions of chemicals and proteins (interaction networks).
It contains interactions for > 68,000 chemicals and
> 1.5 million proteins in 373 species. MATADOR [19] is a
resource for protein–chemical interactions. It differs from
other resources, such as DrugBank and TTD (which usually
contain only the main mode of interactions), by its inclusion
of many direct and indirect interactions.

Other databases of drug–target interactions offer interac-
tion strength information quantitatively based on the exper-
imental binding data. The PubChem BioAssay database
contains bioactivity screens (i.e., percentage of activity inhi-
bition) of chemical substances described in PubChem. It
currently contains > 1400 bioassay depositions and 45 million
biological activity outcomes for > 700,000 compounds. The
Psychoactive Drug Screening Program Ki database [31] pro-
vides screening of novel psychoactive compounds for phar-
macological and functional activity at cloned human or rodent
CNS receptors, channels and transporters. BindingDB [32] is a
database of experimentally determined protein–ligand bind-
ing affinities that provides results of various binding assays. In
addition, the Biological General Repository for Interaction
Datasets database provides 167,660 non-redundant protein
and genetic interactions from 22 model organisms, along with
many drug–gene interactions [33].

The interaction among off-target, non-therapeutic proteins
and drugs may cause ADRs. Previously mentioned databases
on ADR-related proteins include the DITOP, DART and
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Figure 1. Relationships among drugs, disease and phenotypic contexts. A. The central dogma of drug action. B. The drug–disease
relationship with phenotypic context that includes genomic, proteomic and cellular states.
ADR: Adverse drug reaction.
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Table 1. Representative databases related with drug–target network.

Information

type

Database

name

Content Website Coverage

Drug PubChem Structures and activities of
chemicals

http://pubchem.ncbi.nlm.nih.gov > 10 million chemicals

DrugBank Drug and target
information

http://www.drugank.ca 4800 drugs

ChemBank Structures and activities of
chemicals

http://chembank.broadinstitute.org > 1.2 million chemicals

KEGG
LIGAND

Structures and reactions of
chemicals

http://www.genome.jp/ligand 15,790 chemicals

Protein PDB Structures of proteins http://www.rcsb.org/pdb 54,428 proteins

SWISS-PROT Sequences of proteins http://www.ebi.ac.uk/swissprot 470,369 entries

Target protein TTD Target, disease, pathway
and corresponding drugs

http://xin.cz3.nus.edu.sg/group/ttd 1535 targets, 2107 drug/
ligands

TargetDB Target registration
(experimental progress)

http://targetdb.pdb.org 14,200 targets (human)

PDTD Structures of potential
drug targets

http://www.dddc.ac.cn/pdtd 841 potential targets

SuperTarget Drug targets,
metabolization and
pathway

http://insilico.charite.de/supertarget > 2500 proteins, 1500 drugs

TPDB Reactive metabolite target
proteins

http://tpdb.medchem.ku.edu/tpdb.html 13 human targets, 32
chemicals

ADR protein DITOP Drug-induced toxicity
related proteins

http://bioinf.xmu.edu.cn/databases/ADR 618 proteins, 529 drugs/
ligands

DART Adverse effect targets of
drugs

http://xin.cz3.nus.edu.sg/group/drt 236 proteins, 1327 drugs/
ligands

MDL toxicity In vitro and in vivo data of
toxicity (commercial)

http://www.symyx.com 150,000 chemicals

Drug–target TTD Drugs and related diseases
of a target

http://xin.cz3.nus.edu.sg/group/ttd 1535 targets, 2107 drug/
ligands

SuperTarget Targets of a drug http://insilico.charite.de/supertarget > 2500 proteins, 1500 drugs

STITCH Known and predicted
interactions of drug–target

http://stitch.embl.de > 1.5 million proteins,
68,000 chemicals

MATADOR Manually annotated
target–drug interactions

http://matador.embl.de 2901 proteins, 801 drugs

PubChem
BioAssay

Bioactivity screens of
chemical substances

http://pubchem.ncbi.nlm.nih.gov > 45 million activities,
700,000 chemicals

PDSP Ki DB Pyschoactive drug screens http://pdsp.med.unc.edu 47,310 Ki values

BindingDB Binding affinities of
protein-chemicals

http://www.bindingdb.org 28,112 chemicals

BioGRID Protein, drug and genetic
interactions

http://www.thebiogrid.org 167,660 interactions

Genetic profile Connectivity
Map

Gene expression, diseases
and bioactive small
molecules

http://www.broadinstitute.org/cmap > 7000 expression profiles,
1309 compounds

GEO Gene expression/
molecular abundance

http://www.ncbi.nlm.nih.gov/geo 404,071 samples (RNA,
genome, protein)

ArrayExpress Gene expression under
biological conditions

http://www.ebi.ac.uk/microarray-as/ae 8521 experiments, 246,071
assays

NCI60 http://genome-www.stanford.edu/nci60 > 70,000 chemicals, > 8000
genes, 60 cells

ADR: Adverse drug reaction.
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MDL toxicity databases; these databases can be used to infer
the relationship of a drug and related ADRs.

The KEGG PATHWAY is a collection of manually drawn
pathway maps of the molecular interaction and reaction
networks for metabolism of various biological substances
and xenobiotics, genetic information processing, environmen-
tal information processing, cellular processes and human
diseases. MetaCyc [34] is a database of non-redundant, exper-
imentally elucidated metabolic pathways. It contains > 1200
pathways from > 1600 different organisms involved in both
primary and secondary metabolism.

3. Drug–target networks and other drug-
related networks

3.1 Drug–target networks
Recently, there have been several pioneering studies to build
drug–target networks. Paolini et al. [35] presented global
mapping of pharmacological space by integrating several
sources of medicinal chemistry structure–activity relationship
data. They built a human polypharmacology interaction
network representing relationships between proteins in chem-
ical space by using binding data from Pfizer. In addition, they
defined three types of indexes to measure human protein
promiscuity. In the following year, Yildirim et al. [2] built a
bipartite graph of drug–protein interactions from FDA-
approved drugs and their target proteins. In this graph, a
drug and protein are connected to each other if the protein is a
known target of the drug (drug–target network). In addition,
they built a human disease network generated from OMIM-
based disorder–disease gene associations. Yamanishi et al. [3]

built four classes of drug–target interaction networks in
humans involving enzymes, ion channels, GPCRs and nuclear
receptors. It is notable that they linked unknown interactions
between chemical/genomic and pharmacological space from

known information by developing a computational algorithm.
In an attempt to build complete networks, they used known
data in combination with a prediction algorithm. Yamanishi
et al. used the predictions to fill missing links and they used
predicted pairs to build a complete network. Keiser et al. [36]

developed a method that quantitatively groups and relates
proteins based on the chemical similarity of their ligands.
They defined a similarity score between ligand sets, and thus
built a similarity network for 246 enzymes and receptors
by using the scores between ligand sets of enzymes and
receptors. In 2009, Cases and Mestres [37] defined the com-
plete cardiovascular target space that contains both therapeutic
targets and off-targets by integrating previous knowledge on
cardiovascular targets and 44,032 small molecules. They built
a ligand–protein interaction map between the 14,734 scaffolds
from all molecules annotated to cardiovascular targets and the
581 cardiovascular-relevant proteins. Although their map
covers a small region of the whole pharmacological space,
their work is useful because of the strong potential application
for drug discovery. Recently, Vina et al. [4] built a drug–target
network by using predicted drug–target pairs based on drug
connectivity and protein receptor sequences. While most
previous work for predicting target proteins of a drug found
only a single target, their algorithm predicted more than
one target.

Nagamine et al. [38,39] made predictions for protein–chem-
ical interactions by using protein data (i.e., amino-acid
sequences) in conjunction with chemical structures and
mass spectrometry data. Their work [38,39] in 2009 improved
prediction accuracy by proposing a strategy to repeatedly feed
back experimental results into computational predictions with
consideration of biological effects of interest. Recently, Xie
et al. [40] introduced a novel computational strategy to identify
protein–ligand binding profiles on a genome-wide scale.
Furthermore, they applied this technique to elucidate the

Table 1. Representative databases related with drug–target network (continued).

Information

type

Database

name

Content Website Coverage

Gene expression and drug
activity against 60 cancer
cells

OMIM Relationships of genes and
diseases

http://www.ncbi.nlm.nih.gov/omim 2239 genes, 3770 diseases

Cellular profile NCI60 Gene expression and drug
activity against 60 cancer
cells

http://genome-www.stanford.edu/nci60 > 70,000 chemicals, > 8000
genes, 60 cells

Pathway KEGG Pathways of biological
substances and
xenobiotics

http://www.genome.jp/kegg 93,318 pathways

MetaCyc Non-redundant
experimental metabolic
pathways

http://metacyc.org 12,000 pathways

ADR: Adverse drug reaction.
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molecular mechanisms of adverse drug effects. They built a
Cholesteryl Ester Transfer Protein (CETP) off-target binding
network and inferred the mechanisms of adverse drug effects
of CETP inhibitors. SuperPred [41], developed by Dunkel
et al. in 2008, predicts potential targets of a query chemical
structure based on the chemical similarities of predicted
Anatomic Therapeutic Chemical (ATC)-codes using drug–
target interactions and pathway information. Different from
Paolini’s and Campillos’s target identifiers, Li and Lai [42]

predicted potential drug targets based on simple sequence
properties and not on the known drug–target interaction
information alone. Their identifier can be used to find
potential targets, and thus to complete the missing nodes
of networks instead of the missing links.

3.2 Drug–ADR target networks
The information on side effects can be used to build a drug–
target network and an off-target network. Under the assump-
tion that drugs with similar in vitro protein binding profiles
tend to cause similar side effects, Campillos et al. [7] developed
an identifier of drug targets using side effect similarity. They
used phenotypic side effect similarities to infer whether two
drugs share a target, and thus built a network of drugs
predicted to have common protein targets to identify target
proteins. Xie et al. [40] applied their computational tool of
identification of protein–ligand binding profiles to build an
off-target binding network of CETP as mentioned before.

3.3 Disease and treatment networks
Instead of focusing on target and off-target proteins, many
researchers have attempted to build networks related to drugs
and treatment. One such example, the human disease net-
work [6], was built by Goh et al. They classified each disorder
into one of 22 classes based on the physiological system. From
the diseasome bipartite graph, they also generated two bio-
logically relevant network projections: human disease network
on the genome space and disease gene network on the disease
space. Another similar example is the therapy network [43]

developed by Nacher and Schwartz. They investigated the
human network corresponding to interactions between FDA-
approved drugs and human therapies. Nacher and Schwartz
defined five bipartite graphs whose nodes can be classified into
two disjoint sets of drugs and therapies at five individual
hierarchical levels of ATC classification. Yildirim et al. also
built a human disease network generated from OMIM-based
disorder–disease gene associations [2].

3.4 Problems of network integration
In order to be useful, drug–target networks should be com-
bined with many diverse biological information sources and
then properly analyzed. To understand more realistic in vivo
dynamics of numerous components in cells, many different
kinds of interactions (such as protein–protein interactions,
protein–DNA interactions, epigenetic changes, metabolite

effects and functional pathway information) should be con-
sidered simultaneously. These interactions should be inte-
grated because the whole system together determines the
cellular activity or phenotypic result. However, there are
many problems and obstacles with network integration.

First, there are inconsistent chemical names in many
databases and networks; thus, consistency in chemical naming
is necessary to solve this problem. The consistent process of
naming has to also be performed for other biological compo-
nents, such as targets and diseases. Another problem is
different coverage and depth of various databases and net-
works. Each database contains large-scale data individually,
but the number of common components for various databases
is too small, such that the integrated database and network
cannot cover whole biological systems. Integrating the same
types of databases with different coverage increases the num-
ber of data; thus, integrating databases could compensate for
this coverage problem. Another related problem is incomplete
network information. More complete networks can be built by
using the prediction results of unknown biological compo-
nents and missing links between them. Predicting missing
biological components and links is also a good solution for the
coverage problem mentioned above.

A more severe problem is that there exist inconsistencies
between databases. A great portion of interaction data was
derived from error-prone high-throughput experiments [44].
As a result, those interaction data inevitably contain many
errors, which cause serious problems when integrating net-
works. However, it should be realized that network integration
can provide an effective way to detect the inconsistent inter-
action data and clean up the noise that exists in many
interaction networks. Finally, there is a problem in hetero-
geneity of data types. For example, some types of data (such as
Ki values) are real-valued, while data regarding protein–pro-
tein interaction are Boolean (true or false). Some types of
interaction data have physical origin, while some other types
of data describe mere statistical co-dependency. Data hetero-
geneity poses a big challenge in developing a unified frame-
work for interpreting the network, especially once an
integrated network has been made.

4. Biological network comparison

Recently, an exponential increase in information on molecular
interactions has enabled us to compare networks of different
model species, tissues and cell-types under varying conditions.
Because it is believed that the accumulated biological knowl-
edge of different model species could be transferred to humans,
it is of great interest to know the systematic differences between
different model species or any other different conditions for the
purpose of drug discovery. Accordingly, comparative network
analysis gives an opportunity to predict new functional inter-
actions that are poorly understood in one species and to judge
what kind of network information can be directly transferred
to elucidate drug effects in human body [45-56].
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Previously, people have tried to develop methods for
comparing biological networks that were similar to the
sequence comparison methods, even though such methods
were less stable than the sequence comparison [46,48,51,52,54,56].
For example, Matthews et al. [51] and Yu et al. [56] devised a
basic pair-wise network alignment method to compare pro-
tein–protein interaction networks and regulatory networks
across different species using a sequence-based search. In
addition to the simple alignment of single interactions,
many heuristic approaches have been devised for solving
computationally hard network alignment problems by con-
sidering a whole array of network structures [52]. More
generally beyond the pair-wise network alignment, multiple
network alignments evaluating more than two networks have
also been devised and tested to handle general relationships
across multiple networks [54,55]. Similar to the sequence-based
construction of a phylogenetic tree, the relationship between
different networks (e.g., different species, tissues, cell-types or
environmental conditions) can be represented by a tree that
defines global topology of various networks (Figure 2). Fur-
thermore, integrating the flood of biological contents into the
network comparison framework would be needed. This would
include a procedure to define appropriate objective function to
score the matched network with different biological informa-
tion. For a general review about network alignments, see the
review paper by Sharan and Ideker [53].

Based on the network comparison framework, an integrated
network that consists of different, but necessary information
together has been analyzed. The related studies focused on
identifying unknown protein interactions, conserved sub-net-
works (modules), regulatory networks, functional orthology,
enzyme clusters along the genomic location and so on [54,57,58].
These kinds of analyses will become more meaningful as there
is more knowledge about molecular interactions.

5. Systematic drug target identification and
multi-target strategy

Drug target identification has been a major challenge in drug
discovery. Until now, several methods have been applied to
identify a suitable target. Ideally, a good target would reg-
ulate the pathway of interest and blocking the target would
result in effective medical treatment. Because this kind of
target-based rational drug discovery was proposed, the most
important issue has been finding and selecting a specific
target-binding ligand. The rationale for this strategy is that
the specificity to the selected target leads to reduced side
effects that may be caused by undesirable, non-therapeutic
off-target binding [59,60]. Recently, however, multi-targeted
drug strategy has come into the spotlight. Multi-targeted drug
strategy is based upon several observations that many effective
drugs (including Gleevec, anticancer drugs and NSAIDs) have
turned out to act unexpectedly and cause secondary off-target
effects [59,60]. Therefore, it is now believed that several highly
efficient drugs might affect multiple targets simultaneously,

and, therefore, synergistically influence pathways related to the
disease of interest [59-68].

Based on this notion, a systematic way to identify multiple
drug targets is necessary to more clearly reveal the effects of
drug candidates. The most advanced, high-throughput screen-
ing system will be greatly helpful for multiple target identi-
fication [69]; however, usually such systems typically have
limitations, such as insufficient coverage or expensive costs.
Thus, at this stage, a reliable computational method to predict
multiple drug targets can be a valuable tool when comple-
mentarily used with experimental validations [1,3,18,30,38,42,70].
A common feature of these studies is performing proteome-
wide scale prediction between all possible protein–chemical
interactions. Systematic predictions of protein–protein inter-
actions have also been studied by various ways, but might be
more difficult to predict due to intrinsic complexity [71].

Accordingly, computational approaches and accompanying
high-throughput experiments are indispensible for detecting
unrecognized or weak binding drug targets. This combination
is needed because such targets are difficult to detect by
experimental technique alone, making it more difficult to
uncover the complex mode of drug actions [72,73]. Once
potential drug targets are discovered, then the identified
single/multiple drug targets can be analyzed in terms of a
biological network [74-77], as discussed in the next section.

6. Estimating drug effects (target
perturbations) in the network

Assuming reliable network information is given, an important
question for drug discovery would be which target subset is
optimal to achieve favorable therapeutic effects while simul-
taneously reducing non-therapeutic side effects. In other
words, how can we estimate the perturbation effects of drugs
from our network descriptions and topology to infer what
combination of drugs and targets is the best for treating a
disease [75,78,79]. Can we link the analysis results in the multi-
layered molecular information to the complex disease at the
phenotypic level?

Based on previous research, successful promiscuous drugs
seem to bind to multiple distinctive targets which may be
related to functional pathways [60]. Thus, methods to predict
drug targets and estimate target-perturbation effects in a global
integrated network containing varying biological information
would be a highly useful tool. However, such technology is
still in its infancy [80-83]. As an example, Csermely et al. tried to
model global effect related to various network perturbations,
but the model is too simplified to be directly applied to the
integrated network [61].

Another associated problem is drug repurposing or drug
repositioning. Because approved drugs in current markets
already have safe drug profiles, converting the drug purpose
can be a very efficient strategy to discover new drugs [84].
However, we also need to know which drug targets are
relevant to the new therapeutic effect and their likelihood

Lee, Park & Kim

Expert Opin. Drug Discov. (2009) 4(11) 7

416

420

425

430

435

440

445

450

455

460

465

470

471

475

480

485

490

495

500

505

510

515

520

525



of becoming effective drugs in the new positions. Similar
problems such as multi-drug resistance and drug side effects
can be similarly approached.
To estimate drug effects, the integrated network should be

analyzed in terms of the perturbations of multiple drug targets.
Next, the perturbation effects should be transformed to some
sort of score to estimate total treatment effect for a certain
disease. Relating the systematic analysis of drug network per-
turbations to diseases would be of great interest. Finally, the
treatment effect for various diseases by various perturbations
would be predicted quantitatively as shown in the heat-map
of Figure 3.

7. Purpose-suitable drug–target networks

In the previous sections, we examined several main issues of
building an integrated drug–target network. In this section, we
discuss a practical strategy to apply the network to drug
design. As the number of available network components
grows, more computational power will be needed. Practically
speaking, all components, their interactions and all kinds of
descriptions could not be simultaneously considered due to
the limitation in computational power. Thus, alternatively, we
can focus on a particular part of the whole network or group
individual abstract components into higher-order organization
to shrink network size and computational demand. Network
modularization may be a feasible way for such organiza-
tion [82,85-88]. For example, in protein–protein interaction
networks, protein complexes often acts as a functional unit

and can be regarded as one module [89]. Thus, higher-level
representation of the whole network minimizes information
loss while faster and more efficient algorithms are necessary for
analyzing the integrated large network.

Figure 4 displays a strategy for integrated network applica-
tion for a specific purpose. From the complete integrated
network built by integration of different types of biological
interaction data and predictions of missing data, a purpose-
suitable sub-network can be extracted for a specific applica-
tion. Sub-networks could be used for finding a new drug
target, developing a promiscuous drug design for depression,
or inferring side effects of a new developed drug. The
integrated network consists of multiple layers (five layers in
the example). A sub-network of a specific layer (disease, gene
and drug layer in the example) or a specific node (protein2 in
the example) can be extracted depending on the specific
purpose. These sub-networks display only the network part
that is relevant for the purpose of the specific application. This
makes the analysis of these networks easier because of their
smaller sizes.

8. Conclusion

A drug–target network approach of integrating information
on a drug, gene, protein, cell and a disease can be a good
solution for more efficient drug discovery, especially as more
biological, chemical data and interaction data are produced.
There have been several pioneer studies on building and
investigating drug–target networks, disease networks and
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Figure 2. Schematic representation of network alignment and important sub-networks.
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other drug-related networks (Table 1). However, such net-
works typically cover just a small part of the whole biological
and chemical network space and include many missing and
erroneous nodes and links. Thus, a more complete network
should be built by integrating various types of networks.
However, the process of integrating networks has many
problems, such as inconsistency of chemical names and data
heterogeneity. Moreover, additional problems are associated
with different coverage of various databases, filling in missing

data through predictions and removing inconsistency between
different data sets. After building a more complete integrated
network, the network should be properly analyzed to render
itself useful for practical applications, such as drug target
identification and drug repurposing. As a solution, we suggest
several strategies, such as biological network comparison,
estimation of drug effects (target perturbations) in the sys-
tematic view and extraction of a purpose-suitable drug–target
network. Drug–target networks integrated with many other
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effect
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Figure 3. Schematic diagram for estimating perturbation effects.
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Figure 4. A strategy for building a complete integrated network and its application.
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biological networks could become an immensely useful source
for future drug development.

9. Expert opinion

Throughout the manuscript so far, we have integrated our
‘expert opinion’ with the contents to assert the belief that a
network and biological data should be integrated to make
them most useful. Therefore, most of our opinions in this
section are simply the restatement of our discussions in the
previous sections from a slightly different perspective.
As stated earlier, the most difficult issue associated with an

integrated network is that all of its components are heteroge-
neous. For example, drugs and proteins are molecules whose
nature is obviously physical; while the nature of genes is not so
obvious, it can have different meaning depending on the
definition of genes and the context [90]. In addition, the nature
of disease is clearly different from that of drugs and molecules.
Moreover, the relationships between these components are also
heterogeneous. The interactions between drugs and molecules,
such as drug–protein interactions and protein–protein interac-
tions, have a physical origin that can be expressed in terms of free
energy and molecular interactions. On the other hand, disease–
protein or disease–gene interactions typically imply that a certain
protein or gene is associated with a particular disease, regardless
of a specific mechanism. Other related problems are that the
network is often incomplete and unevenly sampled and as a
result some regions of the network are densely populated while
others are not. Such problems of heterogeneity and an incom-
plete network pose a difficulty in developing a rigorous compu-
tational framework for interpreting the network. As a way to
assess the importance of nodes, people frequently calculate the
network centrality. If the links are heterogeneous (functional or
physical, Boolean or real-valued), it is unclear how to handle
heterogeneity in a rigorous way. Additionally, if there exists a
severe sampling problem, any conclusion drawn from some type
of global network analysis may be misleading. Problems could
be alleviated if a proper normalization scheme is developed.

The network approach is useful because it can give a global
view by allowing system-level analysis, which proves useful
for drug discovery. However, in our opinion, the ultimate
usefulness of the network approach is yet to be proven. It is
true that an integrated network can provide a global view and
provide a valuable insight on the general relationship among
drugs, target proteins and diseases. However, if one becomes
interested in a specific drug discovery project (for example,
the repositioning of Gleevec) and then eventually makes a
firm decision to launch the project, it is unclear how global
analysis on drug–target networks would benefit the project.
Under this circumstance, it is likely that the investigative
team has already collected a greater amount of relevant
information than would be needed for the repositioning of
Gleevec. Therefore, it is unlikely that a team could gain
additional useful information on Gleevec repositioning by
analyzing the drug–target–disease network, if the network is
a mere collection of known information. The situation would
be different only if the network is not a mere collection of
known information. Therefore, it is critical to create an
information-rich network by augmenting the network with
as many diverse sources of information as possible, by pre-
dicting missing nodes and links, and by cleaning up the
inconsistency in original data sources. Perhaps more critical
is to develop a rigorous computational framework for analyzing
the network to generate non-trivial information that can
ultimately benefit drug discovery.
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