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The theory of evolution is fundamental to the biological
sciences. In essence, it states that organisms exist in
particular environments that typically have scarce
resources, and over time, the probability that the fit
will survive is higher compared with the probability of
survival of the less fit. To be fit for survival, a myriad
of constraints must be satisfied, which limits the range
of available phenotypes. Survival then depends on the
best use of resources that will enhance the likelihood
of survival subject to governing constraints. The closer
an organism is to achieving a relatively optimal or fit
function, the more likely it is to survive. Therefore, over
a long period of time, survival is enhanced by an organ-
ism becoming more finely tuned to the environments
that it experiences and by achieving better fitness within
governing constraints.

All expressed phenotypes must satisfy the constraints
imposed on the molecular functions of a cell. The living
process must abide by physical laws, such as the conser-
vation of mass and energy. Therefore, the identification
and statement of constraints to define ranges of allow-
able phenotypic states provides a fundamental
approach to enhance our understanding of biological
systems that is consistent with our understanding of
the operation and evolution of organisms. With the

advent of whole-genome sequencing in the mid to late
1990s, the reconstruction of genome-scale networks
for microorganisms became possible1–3. Some of the
constraints under which these networks operate can
be identified. A framework for constraint-based
reconstruction and analysis (COBRA) has consequently
arisen and has been successfully applied to study the
possible phenotypes that arise from a genome.
Because of its initial success, COBRA has attracted the
attention of many investigators and has developed
rapidly in recent years. Various in silico procedures
aimed at determining the capabilities and characteristics
of microorganisms have emerged over the past few
years, and these procedures are forming the basis for
in silico analysis of microorganisms. The plethora of
methods that have developed within the COBRA
framework is reviewed here.

Constraints on cellular functions
Different types of constraints limit cellular functions.
Here, we briefly describe constraints in four categories:
fundamental physico-chemical constraints, spatial or
topological constraints, condition-dependent environ-
mental constraints and regulatory or self-imposed
constraints.
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Abstract | Microbial cells operate under governing constraints that limit their range of possible
functions. With the availability of annotated genome sequences, it has become possible to
reconstruct genome-scale biochemical reaction networks for microorganisms. The imposition of
governing constraints on a reconstructed biochemical network leads to the definition of
achievable cellular functions. In recent years, a substantial and growing toolbox of computational
analysis methods has been developed to study the characteristics and capabilities of
microorganisms using a constraint-based reconstruction and analysis (COBRA) approach. 
This approach provides a biochemically and genetically consistent framework for the generation
of hypotheses and the testing of functions of microbial cells.

COBRA

(Constraint-based
reconstruction and analysis).
The overall philosophy and
approach of applying
constraints to limit the range of
achievable functional
(phenotypic) states of GENREs.
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Environmental constraints. Environmental constraints
on cells are time and condition dependent. Examples of
environmental constraints are: nutrient availability, pH,
temperature, osmolarity and the availability of electron
acceptors. For example, Helicobacter pylori is constrained
by its environment — the human stomach — to pro-
duce ammonia at a rate that will maintain its immediate
surrounding at a pH that is sufficiently high to allow sur-
vival. Elemental nitrogen is needed to make ammonia,
and therefore H. pylori has adapted by using amino acids
instead of carbohydrates as its primary carbon source.

Environmental constraints are of fundamental
importance for the quantitative analysis of microorgan-
isms. Defined media and well-documented environ-
mental conditions are needed to integrate data from
various laboratories into quantitative models that are
both accurately descriptive and predictive. Laboratory
experiments with undefined media composition are
often of limited use for quantitative in silico modelling.

Regulatory constraints. Regulatory constraints differ
from the three categories discussed above as they are self-
imposed and are subject to evolutionary change. For this
reason, these constraints may be referred to as regulatory
restraints, in contrast to ‘hard’ physico-chemical con-
straints and time-dependent environmental constraints.
On the basis of environmental conditions, regulatory
constraints allow the cell to eliminate suboptimal
phenotypic states and to confine itself to behaviours of
increased fitness. Regulatory constraints are imple-
mented by the cell in various ways, including the amount
of gene products made (transcriptional and translational
regulation) and their activity (enzyme regulation).

Mathematical representations of constraints
After the recognition and definition of constraints, they
need to be described mathematically. Once in a mathe-
matical form, they can be used to perform in silico
analysis.

Two fundamental types of constraints: balances and
bounds. Constraints can generally be classified as either
balances or bounds. Balances are constraints that are
associated with conserved quantities, such as energy,
mass, redox potential and momentum, as well as with
phenomena such as solvent capacity, electroneutrality
and osmotic pressure. Bounds are constraints that limit

Physico-chemical constraints. Many physico-chemical
constraints are found in a cell, and these constraints are
inviolable and provide ‘hard’ constraints on cell func-
tions. Mass, energy and momentum must be conserved.
The contents of a cell are densely packed and form an
environment where the viscosity can be about 100–1,000
times greater than that of water (see REF. 4 for com-
pelling images). The diffusion rates of macromolecules
inside a cell are generally slow and limiting5,6, depending
on molecule size. The confinement of many molecules
in a semi-permeable membrane causes high osmolarity,
and therefore cells require mechanisms for dealing with
osmotic pressure (such as sodium–potassium pumps or
a cell wall)7–9. Reaction rates are determined by local
concentrations inside cells and might be limited by
mass-transport. Enzyme-turnover numbers are gener-
ally less than 104 sec–1 and maximal reaction rates are
equal to the turnover-number multiplied by the enzyme
concentration10. Furthermore, biochemical reactions
must result in a negative free-energy change to proceed
in the forward direction.

Topobiological constraints. The crowding of molecules
inside cells leads to topobiological, or three-dimensional,
constraints that affect both the form and the function of
biological systems11–15. For example, bacterial DNA is
about 1,000 times longer than the length of a cell. DNA
must be tightly packed in a cell without becoming entan-
gled. For DNA to be functional, it must also be accessible
for transcription; in Escherichia coli, DNA is organized
and regulated so that there are spatio-temporal patterns16.
Therefore, two competing needs — to be tightly packed
but easily accessible — constrain the physical arrange-
ment of DNA in the cell. As a further example, the ratio
between the number of tRNAs and the number of ribo-
somes in an E. coli cell is typically only ten17. As there are
43 different types of tRNA, there is less than one full set
of tRNAs per ribosome, indicating that it might be nec-
essary to configure the genome so that rare codons are
located close together18. Another example of interesting
insights gained by analysing a cell’s composition and size
is that, at a pH of 7.6, E. coli would typically contain
about 16 hydrogen ions15. This extremely low number
indicates that it might be meaningless to discuss a cell’s
intracellular pH in terms of bulk averages, and that
tracking the availability of hydrogen ions is crucial in the
context of genome-scale models19.

Table 1 | Genome-scale networks reconstructed to date

Organism/organelle Number of Number of Number Year Reference
genes metabolites of reactions

Haemophilus influenzae 296 343 488 1999 45

Escherichia coli 660 436 720 2000 91
904 625 931 2003 19

Helicobacter pylori 291 340 388 2002 43

Saccharomyces cerevisiae 708 584 842 2003 48
750 646 1,149 2004 92

Geobacter sulfurreducens 588 541 523 2004 *

Mitochondria N/A 230 189 2004 113

*R. Mahadevan, personal communication.
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unpublished observations). COBRA consists of two
fundamental steps (FIG. 1): first, a GENRE is formed1,
and second, the appropriate constraints are applied to
form the corresponding GEMS. In recent years, many
new in silico methods have been developed using the
COBRA framework. This plethora of methods can be
broadly classified into the following categories: finding
best or optimal states in the allowable range; investi-
gating flux dependencies; studying all allowable states;
altering possible phenotypes as a consequence of genetic
variations; and defining and imposing further con-
straints. The following sections describe the development
in each category.

Optimal or best states
Mathematical programming can be used to identify
biochemical-reaction network states that maximize a
particular network function (FIG. 2). The desired net-
work function is defined and is described mathemati-
cally, which takes the form of an objective function (Z).
Objective functions are generally formed for three pri-
mary purposes: first, the exploration of the phenotypic
potential of a GENRE30,31; second, the determination of
likely physiological states by choosing the objective
function that represents probable physiological func-
tions32,33 such as biomass or ATP production; and third,
the design of strains34–36 to satisfy an engineering goal
such as the improved production of a desired secreted
product. Z can be either a linear or nonlinear function.
Linear objective functions are used to maximize bio-
mass (Z = v

biomass
) or ATP production (Z = v

ATP
), where

the flux (v) through a reaction that drains biomass
constituents or ATP is maximized. All the methods
that are discussed in this category compute optimal
phenotypes on the basis of assumed physiological
objectives.

Single optima. Once the desired network function is
defined, finding the best function of a GENRE is, in
mathematical terms, a constrained optimization
problem. Frequently, the constraints and the objective
function are linear functions, so linear optimization
or linear programming (LP) can be used20,37,38. The
result from the linear optimization is a single network
state (in the form of a flux distribution) that maxi-
mizes the chosen objective. Optimization is the basis
for many of the other analysis methods described
below (FIG. 1; icons 1–3, 5–7, 10–14).

The enumeration of optimal biochemical-reaction
network states has been used to study several organ-
isms including: Saccharolytic clostridium39, E. coli 40–42,
H. pylori43, Haemophilus influenzae44,45 and Saccharomyces
cerevisiae 46–48. The calculated optimal use of the meta-
bolic network can be compared to experimental flux
measurements42,49 or to experimental phenotypic
data50,51. LP calculates one optimal reaction network
state. Interestingly, for genome-scale networks in par-
ticular, there can be multiple network states or flux dis-
tributions with the same optimal value of the objective
function; therefore the need for enumerating alternate
optima arises. The implication of this property is just

numerical ranges of individual variables and parameters
such as concentrations, fluxes or kinetic constants.

The conservation of mass is an example of a balance
constraint. At steady-state, there is no accumulation or
depletion of metabolites in a metabolic network, so the
rate of production of each metabolite in the network
must equal its rate of consumption. This balance of fluxes
can be represented mathematically as S • v = 0, where v
is a vector of fluxes through the metabolic network and 
S is the stoichiometric matrix containing the stoichiom-
etry of all reactions in the network1,20. Similar balance
equations can be written for osmotic pressure7,21, elec-
troneutrality 22 and free energy around biochemical
loops23,24. Balances result in equality constraints.

Bounds that further constrain the values of individual
variables can be identified, such as fluxes, concentra-
tions and kinetic constants. Upper and lower limits
can be applied to individual fluxes (v

min
≤ v ≤ v

max
).

For elementary (and irreversible) reactions, v
min

= 0.
Specific upper limits (v

max
) that are based on enzyme

capacity measurements are generally imposed on reac-
tions. Concentrations must always be non-negative; so
this constraint places a lower bound on concentration
values. Upper bounds for concentrations can arise from
solvent constraints and crowding. Similarly, kinetic
constants also have constraints; they are constrained to
be positive and have an upper bound that is based on
collision frequency (0 ≤ k ≤ k

max
). Transmembrane

potentials are limited to about 240–270 mV, as lipid
bi-layers destabilize above this potential25.

Constraining reconstructed networks defines achievable
cellular functions. Taken together, both bound and
balance constraints limit the allowable functional states
of reconstructed networks. In mathematical terms, the
range of allowable network states is described by a solu-
tion space that represents the phenotypic potential of an
organism26,27. All allowable network states are contained
in this solution space. If the balances and bounds are
described by linear equations, then the solution space is
a polytope in a high-dimensional space, allowing the use
of CONVEX analysis28. If the constraints are bi-linear, such
as those arising from mass-action kinetics of elementary
association reactions, the solution space can be CONCAVE.
There are now genome-scale network reconstructions
(GENRE) for many microorganisms (TABLE 1). These
GENREs correspond to biochemically and genetically
structured databases that can represent multiple ‘omics’
data types. GENREs also form the basis for COBRA of a
particular organism. Imposition of constraints on
GENREs leads to a genome-scale model in silico (GEMS) of
an organism that can be studied to define its capabilities
and characteristics.

Tools for analysing network states
The analysis of microorganism phenotypic functions on
a genome-scale using COBRA has developed rapidly in
recent years3,26. Until recently, it has focused on the
steady-state flux distributions through a reconstructed
network, but is now being used to study all allowable con-
centration29 and kinetic states (I. Famili and colleagues,

CONVEX SPACE

A convex space is one that
satisfies the following condition:
given any two points in the
space, the line segment in
between the points is completely
contained in the space. Examples
of convex objects include a
square, triangle or circle.

CONCAVE SPACE

A space that is not convex.
Examples of concave objects
include a doughnut shape or a
crescent.

GENRE

(Genome-scale network
reconstruction). Applies to a
particular organism, for
example, GENRE of Escherichia
coli. A GENRE contains a list of
all the chemical transformations
that take place in the particular
network. These transformations
can be represented
stoichiometrically. These
stoichiometric representations
form a matrix, the rows of which
represent the compounds, the
columns of which represent the
chemical transformations and
the entries of which are the
stoichiometric coefficients.

GEMS

Genome-scale models in silico of
a particular organism, for
example, GEMS of E. coli. The
COBRA approach is used to
analyse the properties of
GENREs by assessing allowable
functional states.
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Alternate optima. Alternate flux distributions that lead
to equivalent optimal network states are a property of
genome-scale networks. The number of such alternate
optima varies depending on the size of the metabolic
network, the chosen objective function and the environ-
mental conditions55,56. In general, the larger and more
interconnected the network, the higher the number of

beginning to be realized. A GENRE can reproduce the
same function in many different ways. The mathemati-
cal notion of equivalent optimal states is coincident with
the biological notion of silent phenotypes52–54. This
property distinguishes in silico modelling in biology
from that in the physico-chemical sciences where a single
and unique solution is sought.
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Figure 1 | A growing toolbox for constraint-based analysis. The two steps that are used to form a solution space —
reconstruction and the imposition of governing constraints — are illustrated in the centre of the figure1,20,37,111 . As indicated, several
methods are being developed at various laboratories to analyse the solution space. The primary references for the methods
indicated are: 1, REF. 40; 2, REFS 41, 61; 3, REFS 50, 99; 4, REFS 70, 71; 5, REFS 45, 49; 6, REFS 45, 62, 112; 7, REF. 55; 8, REF. 97; 9, REF. 23;
10, REF. 59; 11, REF. 58; 12, REF. 83; 13, REF. 35; 14, REF. 64; 15, REF. 85; 16, REF. 29. Ci, concentration of compound i; Cj, concentration
of compound j; EP, extreme pathway;vi, flux through reaction i; vj, flux through reaction j; v1, flux through reaction 1; v2, flux through
reaction 2; v3, flux through reaction 3; vnet, net flux through loop.
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functions on the basis of measured intracellular fluxes
to find the objective function(s) that, if used in an opti-
mization (as described above), would result in a flux
distribution that most approximates the measured
flux distribution59. This approach was applied to a central
metabolic model of E. coli for which there were experi-
mentally measured flux distributions59. The calculated
objective functions for aerobic and anaerobic growth
were similar to biomass generation and to each other,
indicating that one metabolic objective function can
predict both aerobic and anaerobic flux distributions.

The four methods developed in this category focus on
computing optimal network states. However, calculated
optimal states may or may not be experimentally
observed32,49. Therefore, other methods have been devel-
oped to study the range of achievable cellular functions of
GENREs without optimizing an a priori stated objective.

LP to quantify flux dependencies
Optimization of GENRE functions has been used to
obtain particular solutions, to perform sensitivity
analysis and also to determine the relationship
between reactions in the range of achievable network
states (FIG. 3).

Single parameter perturbation: robustness calculations.
The consequences of enzyme defects on functional
states of GENREs can be determined. The value of the
flux is simply constrained through the affected reaction
and the optimal state is recomputed with this new
constraint, which represents the enzyme defect. If the
exact amount of reduction of enzymatic function is
unknown, the flux can be sequentially changed through
the reaction of interest and the objective function can be
optimized at each step (FIG. 3). Plotting the resultant
optimal value versus the flux value through the reaction
of interest creates a curve that is piecewise linear. The
slope in each of the linear regions of this curve repre-
sents the REDUCED COST60. The reduced cost describes the
change in the objective function per unit change in the
flux through the reaction of interest. Using this informa-
tion, the robustness of the overall network function to
the change in a flux through a particular reaction can be
determined60,61.

Such robustness analysis has been applied to an 
E. coli GENRE to analyse the impact of enzyme activity
on growth rate41,61. Seven essential reactions were identi-
fied in central E. coli metabolism61 by determining if the
growth rate is zero when the activity of a reaction is
zero. Additionally, the metabolic flux through trans-
ketolase and the tricarboxylic-acid-cycle reactions could
be reduced to 15% and 19% of their optimal values,
respectively, with no significant effect on predicted
growth rate60,61.

Variation of two parameters: phenotypic phase planes.
Phenotypic phase planes (PhPPs) represent a method to
perform sensitivity analysis as a function of two vari-
ables. They are used to visualize and characterize many
optimal network states as a function of two fluxes of
interest. Each solution can be characterized in terms

alternate optimal phenotypes.A recursive mixed-integer
LP (MILP) algorithm has been developed to exhaustively
enumerate all the alternate optima55.

The method has been applied to study the central
metabolic network in E. coli 55,57. All the alternate optima
were calculated and were then used to design NMR
experiments for measuring in vivo intracellular fluxes57.
In GENREs, there are several redundant pathways, which
make the enumeration of all optima computationally
challenging. Therefore, only a subset of alternate optima
has been calculated for the E. coli GENRE56 for various
different minimal media conditions. To understand the
complete set of alternate optima, flux variability analysis
was developed to investigate their properties.

Flux variability. Flux variability analysis determines
the full range of numerical values for each flux in the
network, while still satisfying the given constraints
and optimizing a particular objective58. The maxi-
mum value of the objective function is first computed
(as described above), and is used as a further con-
straint on the network to ensure that only optimal
network states are considered (see FIG. 2). Multiple
optimizations are then carried out to calculate the
maximum and minimum flux values through each
reaction. Flux variability analysis can also be used to
study the entire range of achievable cellular functions
as well as the redundancy in optimal phenotypes58.

Finding objective functions. The computation of an
optimal network state requires a statement of the
inferred — but in fact, unknown — cellular objective.
The ‘inverse’ problem is to calculate all putative objective

REDUCED COST

A mathematical programming
term; it is the smallest change in
the objective function coefficient
needed for a zero variable to
become a non-zero variable.

Flux variability for v1

Increase in
stated objective
function

MILP

v1

v2

LP

Potential objective functions

Alternate or equivalent optima

Experimental measurement

Figure 2 | Determining optimal states. If an objective is stated for a biochemical network,
optimal solutions for the objective can be calculated. Linear programming (LP) will find one
particular optimal solution, whereas mixed integer LP (MILP) can be used to find all of the basic
(corner) optimal solutions. Flux variability analysis can be used to find ranges of values for all the
fluxes in the set of alternate optima. In the figure, only v1 is variable across the alternate optima.
Conversely, if an objective function is not known for a biochemical network, experimental
measurements can be used to identify potential objectives that would lead the cell towards that
network state. v1, flux through reaction 1; v2, flux through reaction 2.
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initial state32. Similar results have been obtained for the
adaptive evolution of E .coli that is grown on lactate, but
on pyruvate, the line of optimality is passed and E. coli
grows as a partial anaerobe with a higher overall growth
rate87. So, the GEMS of E. coli allowed the a priori 
prediction of the end point of an adaptive evolution32.

Flux coupling finder. The flux coupling finder (FCF) was
developed to analyse the relationship between fluxes at
steady state in GEMs64. This approach uses an LP frame-
work to minimize and maximize the ratio between all
pairwise combinations of fluxes in a reaction network.
Reaction pairs are found to be directionally coupled — if
a non-zero flux for v

i
implies a non-zero flux for v

j
but

not necessarily the reverse; partially coupled — if a non-
zero flux for v

i
implies a non-zero, but variable, flux for v

j

and vice versa; or fully coupled — if a non-zero flux for
v

i
implies not only a non-zero but also a fixed flux for v

j

and vice versa64.
The FCF was used to analyse GENREs of E. coli,

S. cerevisiae, and H. pylori 64. The percentage of the
reactions in each microorganism that was contained in
coupled sets was ~60% for H. pylori, ~30% for E. coli
and ~20% for S. cerevisiae. This percentage depends
on the growth condition that is being considered, but
is indicative of the flexibility of a network and the
degrees of freedom available in the GENRE. The per-
centage of the total number of reactions found to be
essential for aerobic growth on glucose-minimal
medium was 59% for H. pylori, 28% for E. coli and
14% for S. cerevisiae.

of the SHADOW PRICES of the two fluxes that are being
examined. A shadow price is the rate at which the
objective value changes in response to an increase in
the supply of a particular resource — in the case of a
metabolic network, the resource would be a metabolite.
The shadow price structure is finite in number, dividing
the plane formed by the flux levels through the two
reactions of interest into phases. Lines in the phase
plane separate these phases, which correspond to
changes in the shadow prices as described above. In
other words, the incremental change in the value of the
objective function that occurs owing to an incremental
change in the availability of metabolites is different in
each phase. The lines separating the phases can have
particular designations, such as the line of optimality62

that shows the conditions corresponding to the maxi-
mum biomass yield (g DW cell mmol–1 carbon source,
where DW is dry weight). The phases in the PhPP can
be categorized as: first, futile — an increase in either flux
lowers the objective; second, single substrate limited —
an increase in only one flux will increase the objective;
or third, dual-substrate limited — an increase in either
flux will increase the objective33,62.

PhPPs are useful to interpret data and to design
experiments32,33,62,63. For example, a PhPP analysis of
E. coli growth on succinate and acetate showed that,
under the conditions tested, E. coli grows on the line of
optimality33. Also, the oxygen and glycerol uptake rates
during the course of evolution can be traced out in a
phase plane, showing that E. coli has reproducibly evolved
to grow along the line of optimality from a suboptimal

SHADOW PRICE

A mathematical programming
term; it is the rate at which the
objective value changes by
increasing the supply of a
particular resource (for example,
a metabolite).

Robustness analysis
Slice of PhPP for maximum 
growth rate versus O2 uptake rate

Phenotypic phase plane (PhPP)
Projection of the steady-state flux
 solution space into three dimensions

Robustness analysis
Slice of PhPP for maximum growth 
rate versus succinate uptake rate

G
ro

w
th

 r
at

e

O2 uptake rate Succinate uptake rate

Line of optimality

Succinate uptake rate

O
2  uptake rate

G
ro

w
th

 r
at

e

G
ro

w
th

 r
at

e

Figure 3 | Flux dependencies. The central figure represents a phenotypic phase plane (PhPP). It shows the maximum biomass
production that is achievable at every possible combination of O2 and succinate uptake rates. A phase plane is a projection of the
solution space into two or three dimensions. The line of optimality corresponds to the conditions that are necessary for maximal
biomass yield (g DW cell mmol–1 carbon source, where DW is dry weight). Robustness analysis of the two uptake rates is shown in
the two side panels. The graph on the left shows the effect on growth rate of varying O2 uptake at a fixed succinate uptake rate.
Conversely, the graph on the right shows the effect on biomass generation of varying the succinate uptake rate at a fixed O2 uptake
rate. This figure was generated using SimPheny (Genomatica, Inc.).
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calculations of network-based pathways for genome-
scale networks have only been achieved with limited
input and output constraints30,31.

Network-based pathways are useful for studying
microorganisms. These pathways have been used to
study the inherent redundancy in metabolic networks
and have shown that there is more redundancy in the
production of amino acids by the H. influenzae meta-
bolic network than in the H. pylori metabolic
network30,75. The robustness of an organism to gene
deletions and changes in gene expression has also been
studied using network-based pathways in central 
E. coli metabolism76 and Methylobacterium extorquens
metabolism77. Enzyme subsets (or correlated reaction
subsets) have also been calculated using network-based
pathways78 and, in central S. cerevisiae metabolism,
these enzyme subsets correlated to changes in gene
expression during a diauxic shift79. Network-based
pathways have also been used to assign functions to
orphan genes based on metabolomic data80 and to
design strains81. Computing the singular value decom-
position of extreme pathway matrices75 has been used
to quantify the magnitude of the problem of regulat-
ing a metabolic network82. Therefore, mathematical
definitions of basis vectors have been useful to study
the biological properties of the solution spaces that are
formed in COBRA.

Decomposition of any steady state into extreme path-
ways. A steady-state flux distribution through a bio-
chemical network can be described by non-negative
linear combinations of extreme pathways. Because the
extreme pathways form a convex set of basis pathways,
the decomposition of a particular flux distribution into
the extreme pathways is not unique83. This leads to a
range of allowable weightings on the extreme pathways.
By minimizing and maximizing the weighting on each
pathway in the decomposition of a flux vector, the
allowable ranges can conservatively be determined and
are generally referred to as the α-spectrum83.

The α-spectrum has been studied for human red
blood cell metabolism, a skeleton representation of
bacterial central metabolism83 and central metabolism
in E. coli 84. For the skeleton network, it was shown that
the incorporation of transcriptional regulatory rules
significantly reduced the α-spectrum83. The α-spectrum
was also used to assess the effects of adding additional
flux constraints. Incorporating experimental flux
measurements as constraints reduced the solution
space, leading to a reduced α-spectrum84. Further work
is needed to better define the α-spectrum in a less con-
servative manner, representing research opportunities in
this field.

Uniform random sampling. The contents of a solution
space can be studied by uniform random sampling of
points throughout the space. Uniform random sampling
is computationally tractable for genome-scale models85.
Therefore, it is now possible to quantitatively charac-
terize the full range of capabilities of genome-scale
networks.

Characterization of all allowable phenotypes
Non-optimization based techniques have also been
developed to study the full range of achievable biochem-
ical network states that are provided by the solution
spaces (FIG. 4). These methods do not look only at the
properties of solutions selected by the statement of an
objective, but at all the solutions in the space. The results
are therefore not biased by a statement of an objective,
but indicate properties of the GENRE as a whole.

Convex basis vectors: network-based pathway definitions.
Network-based pathways, such as the extreme pathways
or elementary modes, describe the full capabilities of a
reconstructed biochemical network, and have already
been reviewed extensively in the literature65–69. In math-
ematical terms, a solution space can be spanned by a
set of basis vectors. So, every point in the space can be
decomposed into a combination of the basis vectors.
For convex polytopes, these basis vectors are referred to
as extreme pathways65,68. The extreme pathways are
edges of the convex solution space and therefore form a
convex set of basis vectors. All possible network states in
the solution space can be described by a non-negative
linear combination of network-based pathways.
Elementary modes67,70 are a superset of the extreme
pathways71 — that is, combinations of extreme path-
ways. An elementary mode is a minimal set of enzymes
that can operate at steady state — the enzymes are
weighted by the relative flux that they need to carry for
the mode to function66. There are useful and readily
available software packages for computing elementary
modes72,73. Unlike the LP-based methods discussed
above, the use of network-based pathways for analysing
GENREs is currently computationally difficult74, and

v1,maxv1

v2,max

v2

Uniform random samples
 in the solution space

Any steady-state flux
distribution, v, can be
decomposed into the
extreme pathways

Extreme pathway 2 (EP2)

α1EP1

α2EP2

For the point shown, the
α-spectrum would be:

v = α1EP1 + α2EP2

Extreme pathway 1 (EP1)

X
X

α1 α2

Figure 4 | Characterizing the whole solution space. The range of functions possible within the
solution space can be characterized in two ways: first, through the definition of network-based
pathways (such as the elementary modes and extreme pathways) or second, through the
calculation of uniform random points within the space. The extreme pathways (EPs) are the
edges of a convex space. Therefore, any point inside the space can be reached with a non-
negative linear combination of the extreme pathways. In two dimensions, the decomposition of
any point into two extreme pathways is unique, but in higher dimensions, the decomposition is
generally non-unique. The range of possible weightings (α1) on extreme pathways that can lead to
a particular network state is called the α-spectrum. Uniform random sampling yields probability
distributions for each flux based on the size and shape of the solution space and also provides a
means for analysing the independence of different fluxes. v1, flux through reaction 1; v2, flux
through reaction 2.



NATURE REVIEWS | MICROBIOLOGY VOLUME 2 | NOVEMBER 2004 | 893

R E V I E W S

Altering phenotypic potential
Changes to the metabolic network, either adding or
deleting reactions, can result in an enlarged or reduced
range of achievable cellular functions, respectively (FIG. 5).
The assessment of the functional states that have been
removed or added provides information about the
phenotypic consequences of genetic perturbations.

Gene additions and deletions. Gene additions and
deletions modify the allowable states of a metabolic
network. Regarding gene deletions, if there are no
isozymes in the genome, the reactions associated with
the deleted gene product are removed from the net-
work. The effects of gene deletions can also be simulated
by constraining the fluxes through the corresponding
reactions to zero. Gene additions might result in new
reactions in the metabolic network. Gene additions often
result in an expansion of the wild-type solution space,
whereas gene deletions often result in a reduction of the
wild-type solution space. Optimization can be used to
find an optimal phenotype for the mutant strain.

Wild-type strains can evolve towards optimal states
within the range of allowable solutions32,87 under the
correct selection pressure. Since knockout strains can-
not be expected to behave optimally in their functions,
another approach, minimization of metabolic adjust-
ment (MOMA), uses quadratic programming to find a
point in the altered solution space that is closest to an
optimal point in the wild-type solution space49. This
closest point, where closeness is defined as the Euclidian
distance, is usually not an optimal solution in the

Uniform random sampling of the steady-state flux
space has recently been used to study the properties of
E. coli and human red blood cell metabolism. For exam-
ple, this approach was used to show that, whereas low
flux levels are common in E. coli, a high flux backbone
exists that dominates metabolism85. This high flux back-
bone is related to the high fluxes in the principal eigen-
vector obtained from the singular value decomposition
of a matrix of sampled network states, similar to the
principal eigenvector of the extreme pathway matrix75,82.

Pairwise correlation coefficients can be calculated
between all reaction fluxes based on uniform random
sampling. Perfectly correlated reactions (R2 = 1) operate
as functional modules within a biochemical network,
whereas uncorrelated reactions (R2 ~0) operate inde-
pendently of each other. The degree of independence
between reactions is an important consideration when
choosing a set of fluxes to measure that will best deter-
mine the operating state of a biochemical network.
Uniform random sampling has also been used to study
the size and shape of steady-state flux spaces associated
with red blood cell metabolism86.

Uniform sampling provides an unbiased assessment
of the impact of physico-chemical constraints on the
achievable biochemical reaction network states. If a
random set of points has been obtained for a solution
space, then its segmentation by further constraints
leads to exclusion of a subset of points of the full sample
set. Therefore, one can readily determine which func-
tional states are eliminated by the imposition of new
constraints.

Wild type

OptKnock mutant A 

OptKnock mutant AB 

MOMA

LP

Growth rate

B
y-

pr
od

uc
t s

ec
re

tio
n 

ra
te

Cellular objective

M
et

ab
ol

ic
 e

ng
in

ee
rin

g 
ob

je
ct

iv
e

MOMA prediction for mutant A

LP prediction for wild type

LP prediction for mutant strains

Figure 5 | Altered solution spaces. Solution spaces are altered by changes in the underlying biochemical network, such as occur
with gene deletions. The projections of a wild-type solution space and two smaller knockout solution spaces are depicted.
Optimization of growth rate (x-axis) in the wild-type solution space (red point) would not produce any by-product (y-axis), whereas
optimization of growth rate in the two OptKnock mutant strains A and AB (blue points) finds solutions with by-product secretion.
Minimization of metabolic adjustment (MOMA) — another method that is used for knockout predictions — assumes that, instead of
being optimal for growth, the mutant will minimize the difference between its metabolic state and the metabolic state that is optimal
for the wild-type strain (yellow dot). If the by-product is important, OptKnock can be used to identify knockout strains that couple
optimal biomass production with by-product secretion. So, OptKnock identifies gene knockouts that require a cell to produce the
desired by-product for optimal growth. In essence, the knockouts align the cell’s objective with that of the metabolic engineer.
Adapted with permission from REF. 35  (2003) Wiley Interscience.  LP, linear programming.
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increase in biomass yield coupled to an increase in the
production rate of a desired by-product. In other words,
the cell will be able to grow faster only by producing
more of the desired by-product. The resulting knockout
strain will have significant by-product production at its
maximal growth rate. The problem is formulated as a
bi-level optimization problem and can be used on
genome-scale models35.

OptKnock has been used to identify gene knockout
strategies for the production of intermediate metabo-
lites (succinate and lactate)35 as well as downstream
metabolites (1,3-propandiol, chorismate, alanine, serine,
aspartate and glutamate)35,95. These knockout strains
would theoretically be stable strains that can produce
metabolites in continuous culture, as increases in
growth efficiency will only lead to higher by-product
secretion rates. Initial experimental verification of these
predictions has yielded promising results.

Application of additional constraints
The constraints typically imposed to form the flux
solution space are flux-balance (S • v = 0), enzyme
capacity (v

i
≤ v

max
), and thermodynamic (0 ≤ v

min
).

Frameworks for imposing other kinds of constraints
have been developed (FIG. 6). These include transcrip-
tional regulatory constraints51,96,97, energy balance
constraints23,98 and slow dynamic change in the
growth environment50,51,99.

Regulatory constraints. Gene expression is dependent
on an organism’s growth environment. The regulation
of gene expression might lead to the repression of
enzyme synthesis and therefore the effective removal
of a reaction from the network. To account for the
effects of transcriptional regulation, a Boolean repre-
sentation of the transcriptional regulatory network
can be constructed89,97. With this framework, genes can
only be found in two states, either expressed or not
expressed. If the gene is not expressed, the enzyme will
not be present in the cell and so the associated reaction
is inactive (v

i
= 0).

The imposed regulatory constraints further limit
the phenotypic capabilities of an organism, and vary
in a condition-dependent fashion96. Any of the previ-
ously described methods can be used to probe the
reduced solution space. Constraint-based regulatory
models have been built for central and genome-scale
metabolic models of E. coli 51,89. These combined regu-
latory and metabolic models now account for 1,010
genes. They have been used to predict growth pheno-
types of knockout strains (with 79% accuracy com-
pared with 65% when regulatory effects are ignored)89,
to predict changes in gene expression51,89 and to simu-
late time courses of batch culture experiments51.
Comparison with high-throughput data enabled the
iterative development of the genome-scale metabolic
and transcriptional regulatory model and led to
hypotheses regarding the metabolic and transcrip-
tional regulatory networks in E. coli 89. The incorpora-
tion of regulatory constraints enhances the predictive
capabilities of GEMS.

reduced space (FIG. 5). Optimizing in the reduced space
will always result in an equal or better network perfor-
mance than that predicted using MOMA. If a knockout
strain is suboptimal, it can be evolved to achieve optimal
functions88.

Qualitative growth comparisons for knockout
strains using computational predictions and experi-
mental data — growth versus no growth — show good
agreement with standard optimization, and improved
agreement by using MOMA49 or incorporating regulatory
constraints51,89. Knockout studies have been performed in
E. coli 49,51,76,89–91, S. cerevisiae 47,92,93, H. pylori 43, H. influen-
zae45, and M. extorquens 77 with an accuracy rate of
around 60–90%. Gene addition studies have also been
performed to identify genes that could enhance the
maximal production of amino acids in E. coli 94.

More recently, a gene deletion study investigated
the reason for gene dispensability in yeast, to under-
stand why a large fraction of yeast genes (80%) are
not essential under normal laboratory conditions92.
The authors found that many of these dispensable
genes are required in other growth environments;
others are compensated for by isozymes, and a smaller
fraction is compensated for by alternative metabolic
pathways. The authors also showed that a better
explanation for the possession of multiple isozymes
is the need for high flux rates through specific reac-
tions, rather than the provision of redundancy for
essential genes. Therefore, GEMS of GENREs are
already proving to be useful to address fundamental
biological questions.

Bi-level optimization. COBRA of metabolic and reg-
ulatory networks has been surprisingly successful in
predicting the effects of gene deletions on growth. A
computational procedure called OptKnock was devel-
oped to solve the reverse problem95; it identifies the gene
deletions needed to generate a desired phenotype. In
this approach, the desired phenotype will show an

Dynamic simulation
Assume steady state
at each iteration

Loop law
constraint

Regulatory
constraint

Solution forced
into this corner
by additional
constraints v2

v1 t

X

Figure 6 | Additional constraints. The successive addition of constraints shrinks the solution
space, where the blue hatch lines indicate the infeasible side of the line. The figure illustrates
how the addition of the thermodynamic loop law and regulatory constraints changes the
solution space and the optimal growth-rate prediction (red dot). This predicted steady-state
solution is calculated at each time point in a dynamic simulation. The steady-state solution is
then used by way of a quasi-steady state assumption to approximate derivatives which are
integrated over a small time set to describe system behaviour. t, time; v1, flux through reaction
1; v2, flux through reaction 2; X, biomass.



NATURE REVIEWS | MICROBIOLOGY VOLUME 2 | NOVEMBER 2004 | 895

R E V I E W S

able to predict the time lag after glucose is consumed and
before acetate begins to be reused50,51. Concentrations of
by-products, such as acetate, formate and ethanol were
also in quantitative agreement for anaerobic batch
growth profiles50,51.

Another method, dynamic flux balance analysis,
includes additional constraints that limit the rate of
change of internal fluxes in attempts to describe the
dynamic change in intracellular flux levels99. This method
was applied to study E. coli growth in a batch culture and
was found to match experimental observations.

Future directions
The initial success of COBRA has spurred the develop-
ment of the described methods in a few years. It is likely
that this process will continue over the coming years.
With a large number of constraints existing in nature and
being self imposed by cells through regulation, it should
be possible to continue to narrow in on physiological
functions by identifying constraints and successively
imposing them on GENREs, thereby limiting the range of
allowable phenotypes.

Expanding the scope of reconstructed networks. Most of
the existing GENREs are used for analysis of metabo-
lism. However, any type of biochemical reaction net-
work can be represented with a stoichiometric matrix,
and the analysis tools discussed in this review can be
applied to analyse its properties. For example, sufficient
data to reconstruct signalling networks with a stoichio-
metric matrix are becoming available102–107, as shown
by the recent reconstruction of a stoichiometrically
balanced JAK–STAT (Janus kinase and signal transduc-
ers and activators of transcription) signalling network
in the human B cell108. Another type of network that can
be reconstructed is the process of transcription and
translation — this has already been completed for a
prototypic network109.

Other solution spaces. Most of the COBRA studies
describe the range of allowable steady-state fluxes.
However, several different mathematical subspaces are
associated with the stoichiometric matrix that describes
a network reconstruction. Four fundamental subspaces
are associated with a stoichiometric matrix, each with
significance for biochemical reaction network func-
tions: first, the null space, which contains the feasible
steady-state flux distributions; second, the left null
space, which contains the metabolite conservation
quantities; third, the row space, which contains the
dynamic flux vectors; and fourth, the column space,
which contains the metabolite time derivatives.
Through mass-action kinetic representations, the space
of possible concentration states or the range of possible
kinetic values associated with measured experimental
data can be studied. Initial studies on the kinetic and
concentration spaces have been performed29.

Alternate methods. The study of alternate solution
spaces and additional constraints will lead to the defini-
tion of solution spaces formed by nonlinear constraints.

Energy balance analysis. The mass balance constraint,
S • v = 0, is analogous to Kirchhoff’s first law for electrical
circuits — which states that the sum of currents that
enter a node must be balanced by the sum of currents
that leave a node. Similar to Kirchhoff ’s second law —
which states that the sum of voltage drops around a
loop is zero — the sum of Gibbs free-energy changes
around a loop in a biochemical reaction network must
be zero23,98. These loops have been classified as type III
extreme pathways71, and network-based pathway analy-
sis can be used to identify biochemical loops in genome-
scale networks98. In agreement with thermodynamic
principles, each reaction must have a negative Gibbs
free-energy drop (bound constraint) in order to proceed,
and the summation of the free-energy drops around a
biochemical loop must be zero (balance constraint).
To satisfy these two criteria, biochemical loops are con-
strained to have zero net flux. Therefore, the application
of the loop law places a bound constraint on the fluxes in
the network and results in a non-convex solution space,
which will certainly be a subject of further investigation
as this field moves forward.

Energy balance analysis (EBA) has been used to
analyse a genome-scale model of E. coli 23. In this study,
the EBA constraint on the fluxes was imposed so that a
set of free-energy drops that satisfy the loop law had to
be present to allow a flux distribution through the net-
work. The incorporation of the energy constraints
resulted in a more tightly constrained range of allow-
able internal flux distributions, although these addi-
tional constraints did not affect the maximum growth
prediction or the range of possible values of any of the
exchange fluxes. It is important to consider the incor-
poration of the loop law when randomly sampling a
phenotypic space100 or when identifying multiple
alternate optima56.

Slow changes in the growth environment. The methods
presented so far have all dealt with steady-state flux
distributions in networks; however, these steady states
can be used to model slower dynamic processes. The
timescales associated with internal cellular processes
may be much shorter than those associated with an
organism’s environment. Temporal decomposition
leads to the assumption that cells are in an internal
quasi-steady state relative to the dynamics of their envi-
ronment. The quasi-steady state assumption (QSSA)
can be used to approximate the time derivatives at each
point, and a dynamic curve over longer time periods
can be generated to simulate the dynamics of batch and
fed-batch experiments50,51. QSSA assumptions are rou-
tinely used in several fields for many applications. For
example, it is a standard procedure to apply the QSSA
for the intermediates of enzymatic reactions in deriving
enzymatic rate laws101.

This approach has been used to simulate E. coli
growth experiments in many different environments.
Both regulated and unregulated constraint-based models
have been used in dynamic simulations. For aerobic
growth on glucose, both models predict acetate secretion
and re-utilization; only the regulated model, however, is



896 | NOVEMBER 2004 | VOLUME 2  www.nature.com/reviews/micro

R E V I E W S

potential for important application to both metabolic
engineering and drug discovery in the near future.
There are recent articles that describe the use of con-
straint-based models for designing new microbial
strains for metabolite production35,36,81,95. The use of
these models to identify non-intuitive strain designs will
advance the field of metabolic engineering. GENREs
and GEMS are now becoming available for organisms
that are important in bioremediation110. Constraint-
based models can also be used to identify proteins that
are essential for growth. These essential enzymes could
serve as potential targets for the development of new
antibiotics.

Constraint-based models have been constructed
for several microorganisms, and have been useful for
predicting and understanding phenotypic behaviour.
Incorporation of new constraints reduces the available
solution space and will increase the predictive capabili-
ties of the models. Continued method development
will be needed to further understand and better predict
cellular behaviour.

For example, most elementary reactions result from the
interaction of two compounds. Therefore, the flux
through these elementary reactions is described by mass
action kinetics as v

i
= k

i
C

A
C

B
. The form of this equation

leads to the definition of bi-linear constraints. This bi-
linearity means that the convexity of these phenotypic
spaces will often be lost, necessitating the development
and application of new analysis methods. For example,
in a convex space, the finding of an optimal state always
leads to the finding of the global optimum. However, in
non-convex spaces, there are also local optima, and it
becomes a more challenging problem to identify global
optimal states or to uniformly sample high-dimensional
solution spaces.

Practical applications. Industrial- and academic-grade
software is now available for companies and academic
laboratories to easily implement many of the types of
analyses presented in this review (GAMS, Matlab,
Mathematica, SimPheny). Constraint-based model-
ling26 similar to that discussed in this review has the
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