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the next paradigm in

The dominant paradigm in drug discovery is the concept of designing maximally selective ligands to act on individual drug
targets. However, many effective drugs act via modulation of multiple proteins rather than single targets. Advances in systems
biology are revealing a phenotypic robustness and a network structure that strongly suggests that exquisitely selective compounds,
compared with multitarget drugs, may exhibit lower than desired clinical efficacy. This new appreciation of the role of
polypharmacology has significant implications for tackling the two major sources of attrition in drug development—efficacy and
toxicity. Integrating network biology and polypharmacology holds the promise of expanding the current opportunity space for
druggable targets. However, the rational design of polypharmacology faces considerable challenges in the need for new methods
to validate target combinations and optimize multiple structure-activity relationships while maintaining drug-like properties.
Advances in these areas are creating the foundation of the next paradigm in drug discovery: network pharmacology.

Over the past decade, there has been a significant decrease in the rate
that new drug candidates are being translated into effective therapies in
the clinic. In particular, there has been a worrying rise in late-stage
attrition in phase 2 and phase 3 (ref. 1). Currently, the two single most
important reasons for attrition in clinical development are (i) lack of
efficacy and (ii) clinical safety or toxicology, which each account for
30% of failures!. These late-stage attrition rates are at the heart of much
of the relative decline in productivity of the pharmaceutical industry.
Moreover, the decline in productivity is creating a major financial
shock to the pharmaceutical industry. Owing to patents expiring on
the current generation of marketed drugs, from 2010 onward, phar-
maceutical companies will face the first fall in revenue in four decades.

Many reasons have been proposed for this decline in pharmaceu-
tical research and development productivity. However, the funda-
mental problem may not be technological, environmental or even
scientific but philosophical—there may be issues with the core
assumptions that frame our approach to drug discovery. The increase
in the rate of drugs failing in late-stage clinical development over the
past decade has been concurrent with the dominance of the assump-
tion that the goal of drug discovery is to design exquisitely selective
ligands that act on a single disease target. This philosophy of rational
drug design, or more specifically, the ‘one gene, one drug, one disease’
paradigm, arose from a congruence between genetic reductionism and
new molecular biology technologies that enabled the isolation and
characterization of individual ‘disease-causing’ genes?, thereby
enabling the full realization of Ehrlich’s philosophy of ‘magic bullets’
targeting individual chemoreceptors’. The underlying assumption of
the current approach is that safer, more effective drugs will result from
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designing very selective ligands where undesirable and potentially
toxic side activities have been removed. However, after nearly two
decades of focusing on developing highly selective ligands, the clinical
attrition figures challenge this hypothesis.

Need for a one-two punch

Clinical attrition rates are not the only data to challenge the current
paradigm in drug discovery. Large-scale functional genomics studies
in a variety of model organisms have revealed that under laboratory
conditions, many single-gene knockouts by themselves exhibit little or
no effect on phenotype, with approximately 19% of genes being
essential across a number of model organisms*®. In addition to the
19% lethality rate, systematic genome-wide homozygous gene deletion
experiments in yeast reveal that only 15% of knockouts result in a
fitness defect in ideal conditions’. A project to delete each of the
druggable genes® in the mouse genome and profile each knockout
across a battery of phenotypic assays has revealed that as few as 10% of
knockouts demonstrate phenotypes that may be of value for drug
target validation®9-11,

This robustness of phenotype can be understood in terms of
redundant functions and alternative compensatory signaling routes'?.
Network analysis of biological pathways and interactions has revealed
that much of the robustness of biological systems can derive from the
structure of the network!>!4, The scale-free nature of many biological
networks results in systems that are resilient against random deletion
of any one node but that are also critically dependent on a few highly
connected hubs. The inherent robustness of interaction networks, as
an underlying property, has profound implications for drug discovery;
instead of searching for the ‘disease-causing’ genes, network biology
suggests that the strategy should be to identify the perturbations in the
disease-causing network!®,

Network biology analysis predicts that if, in most cases, deletion of
individual nodes has little effect on disease networks, modulating
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multiple proteins may be required to perturb robust pheno-
types'>1®17. The emergent phenotype that occurs with the perturba-
tion of multiple nodes is experimentally demonstrated by synthetic
behaviors: synthetic lethality, synthetic sickness and synthetic rescue.
Dual knockouts in a number of model systems have shown that
although the isolated deletion of two individual genes may demon-
strate no effect, the simultaneous deletion of the two genes can be
lethal (synthetic lethality) or deleterious (synthetic sickness)'®. A
recent large-scale study by Hillenmeyer et al. demonstrates the extent
of synthetic lethality when gene deletions are augmented by chemical
interventions!®. Under ideal conditions, only 34% of single-gene
deletions in yeast resulted in lethality or sickness. However, when
the whole genome panel of yeast single-gene knockouts was screened
against a diverse small-molecule library and assayed against a
wide range of environmental conditions, an additional 63% of
gene knockouts showed a growth phenotype!?, resulting in 97% of
genes demonstrating a fitness defect when challenged with a
small molecule under at least one environmental condition. Thus,
although the majority of genes may be redundant under any
one environment, there seems to be little redundancy across a
spectrum of conditions when a genetic perturbation is combined
with a chemical insult.

As increased understanding of the role of networks in the robust-
ness and redundancy of biological systems challenges the dominant
assumption of single target drug discovery'®2%2%, a new approach to
drug discovery—that of polypharmacology!®1720-21,24-29
ging. Polypharmacology is not to be confused with the behavior of
promiscuous aggregators (as identified by McGovern et al.) that arise
from certain small molecules self-associating into colloids at
high concentrations in biological buffers®. Instead, polypharmacology
is the specific binding of a compound to two or more molecular
targets. In an analogy to Paracelsus’ axiom that the difference between
a drug and a poison is the dose, the utility or toxicity of synthetically
lethal and synthetically sick combinations is found in the biological
context to which they are applied. Therefore, understanding the
polypharmacology of a drug and its effect on biological networks
and phenotype is essential if we wish to improve efficacy but also
understand toxicity.

—Is emer-

Synthetic lethality in cancer

The fundamental challenge of anticancer therapy is the need for agents
that eliminate cancer cells with a therapeutic index that is safely
tolerated by the patient. Most current anticancer drugs inhibit
essential functions that are present in both normal and cancerous
cells. Although these differentially impact rapidly dividing cancer cells,
the essential nature of the targets of most cytotoxic anticancer drugs
results in narrow therapeutic indices. In recent years, a new generation
of drugs have targeted protein kinases, such as ABL, EGRF and
ERBB2, that are differentially expressed in different cancers. These
new drugs, which target non-essential proteins, have more manageable
side effect profiles than cytotoxics; however, clinical efficacy is, in
general, limited. An ideal cancer therapy, therefore, would be one that
targeted proteins or interactions that are essential in cancer cells but
non-essential in normal cells.

Cancer-specific molecular targets are rare. Most mutated oncogenic
proteins are also present in normal cells, and selective inhibition of the
mutant form can be a challenge. For example, the chronic myeloid
leukemia (CML)-specific BCR-ABL fusion protein is inhibited by
imatinib. However, imatinib also inhibits the non-oncogenic C-Abl
kinase in normal cells, and long-term administration of the drug can
lead to cardiotoxicity®!. To overcome the difficulty of identifying and
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targeting differential features in a cancer, synthetic lethality has been
proposed as a possible strategy for therapeutic intervention®2. In the
context of oncology, genetic and epigenetic changes in a cancer cell
may change not only the relative expression levels but also the
stoichiometry of the interaction network, and thus change the relative
dependence on specific proteins relative to normal cells. Thus, two
proteins that are non-essential in a normal cell may be essential in the
context of a re-wired cancer cell network. In short, though the
majority of the protein inventory in a cancer cell is the same as a
normal cell, the differences in the topology of the biological networks
could be targeted to produce an improved therapeutic index. Indeed,
subtle differences in network stability and structure between cancer
cells may explain the wide variance in cell fate that has been observed
in individual cells of the same genetic lineage.

Whitehurst et al. recently conducted a whole-genome synthetic
lethality screen in combination with paclitaxel, resulting in the
discovery of new drug-drug combinations*4., From the whole-genome
RNA interference screening, 87 initial genes were identified that
sensitized a human non-small-cell lung cancer line to paclitaxel,
including the gene encoding vacuolar ATPase, the target of salicyli-
halamide A. Subsequent testing of salicylihalamide A and paclitaxel in
combination was shown to reduce cancer cell viability. Sensitization
synthetic lethality screens can also be used to discover potential
synergistic combinations that can enhance the effectiveness of thera-
pies. For example, breast cancer cells with deficiencies in BRACI and
BRAC2 show differential synthetic lethality to inhibition of poly(ADP-
ribose)-polymerase-1 (PARP). Screening a PARP inhibitor for addi-
tional synthetic lethality with an RNAI library identified a set of
kinases, including CDK5, whose knockdown resulted in increased
sensitization to the PARP inhibitor®®. In addition to whole-genome
screening, hypotheses for new drug combinations can be discovered by
analysis of gene expression signatures. For example, analysis of breast
cancer gene expression data revealed that the “gang of four” (COX2,
MMP1, MMP2 and epiregulin) is essential for lung metastasis®>’.
Genetic and pharmacological inhibition of these four genes, in
combination, resulted in the halting of metastatic progression in a
mouse model®. Previous advances in cancer combination therapies,
such as those against childhood leukemia, were developed empirically
over three decades. Synthetic lethality chemical sensitization screens
offer a promising method to help systematically explore candidate
cancer drug combinations efficiently in the laboratory.

The relationship between kinetics and systemic responses to per-
turbations offers an intriguing additional dimension in which network
pharmacology strategies can be applied; it also provides a framework
for understanding systems responses>®* 4, The sequence in which a
combination is dosed may create different perturbations to the net-
work that may have a dramatic effect on efficacy’®*!. The systemic
effects of network perturbations suggest that further studies on dosing
sequence should follow the discovery of even modest effects of
combination therapies.

Antibacterial polypharmacology

The single-target approach has been a major assumption behind
genomics-based drug discovery strategies so far, including the search
for new antibacterial targets*>~*°. However, the biologically led strategy
for new antibacterial drugs, usually consisting of the search for single
proteins that are essential when deleted, is flawed for two fundamental
reasons: the downstream difficulty of discovering small-molecule
compounds has often been considered only after significant invest-
ment in biology and a single amino acid mutation in the target protein
is often enough to confer drug resistance. Many effective antibiotics
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act by targeting multiple proteins simultaneously rather than indivi-
dual proteins?®®. For example, the antibacterial action of
B-lactams is dependent on the inhibition of at least two of the
multiple penicillin-binding proteins (PBPs). Indeed, because multiple
PBPs can be deleted with no effect on phenotype?’, the strategy of
single target essentiality would not have discovered this important
class of antibacterial drug targets. Similarly, fluoroquinolone antibio-
tics are dual-targeted inhibitors of the proteins ParC and GyrA
(ref. 48). p-Cycloserine inhibits four targets, both pairs of alanine
racemases and D-Ala-p-Ala ligases. Likewise, fosfomycin overcomes
the redundancy of UDP N-acetylglucosamine enolpyruvyl transferases
by inhibiting them both. Therefore, if we wish to design single drugs
that limit drug resistance, we could consider the development of
methods to search and prioritize which combinations of targets can be
inhibited by the same drug and are essential, either individually (‘dual
essentials’) or in combination (‘synthetic lethals’).

A strategy of antibacterial polypharmacology can challenge the
current approach to genome-based drug discovery of anti-infectives
in four important ways. First, the druggability of a target is
prioritized over single target essentiality. Second, the target does
not need to be unique to the organism or absent in the host.
Although many essential housekeeping enzymes may be common
between the host and infectious agent, drug selectivity between the
host and infectious agent can be determined at the binding site
level. Third, targets are sought that are lethal in combination but
may have been overlooked as non-essential in individual gene
knockout studies, and fourth, groups of targets that are predicted to
potentially bind the same compound are prioritized over singleton
druggable targets. By targeting two or more essential genes with a
single chemical agent, the ability to delay drug resistance is designed
into the target discovery strategy from the start. Given the failure of
current genome-based strategies for discovering new antibacterial
drugs®, learning the lessons of the previous successful generation of
antibacterial drugs may encourage the development of antibacterial
polypharmacology discovery strategies.

Topology of targets

The two key challenges facing the development of network pharma-
cology are identifying a node or combination of nodes in a biological
network whose perturbation results in a desired therapeutic out-
come*>, and discovering agents with the desired polypharmacology
profile to perturb those nodes. Three complementary methods for the
comparative analysis of disease networks are systematic screening,
knowledge-based combinations and network analysis. Presently, com-
bination screening of mixtures of drugs, chemical tools and RNAIi in
cell-based disease models is the most efficient means of systematically
discovering new drug-drug combinations and synthetically lethal gene
pairs. However, as with all preclinical models, active combinations
discovered in the laboratory do not necessarily translate into the
clinic>!. Moreover, idealized synergist screens between drugs or RNAi
in preclinical assays do not account for the complications of dosing,
scheduling pharmacokinetics and metabolism necessary to optimize a
therapeutic drug cocktail in the clinic. Owing to the size of the search
matrix, RNAi—chemical sensitization screens are usually performed
with a single drug against a whole-genome RNAi array®*. Likewise,
systematic combination screening of approximately 1,000 US Food
and Drug Administration (FDA)-approved drugs required the use of
high-throughput screening methods to assay the massive data matrix
required for the factorial isobolgram analysis of each combination
through the full dose range®>. Therefore, if we are to effectively
search for new drug combinations, there is a pressing need for

computational methods that could reduce the global search space
for target combinations**>!.

Owing to the vast number of possible drug and target combinations
and the ethical considerations and resource constraints on using
in vivo models and conducting clinical trials, most new combinations
have been selected for empirical testing based on a knowledge of the
underlying disease biology. Such knowledge-based approaches are
often incremental but can make a dramatic impact on disease out-
comes, as demonstrated by the success of multidrug highly active
antiretroviral therapy in decreasing human immunodeficiency virus
(HIV) mortality rates in the developed world. Advances in pathway
analysis®* and text mining of the biomedical literature®>>® can
potentially be used to enable the large-scale text mining of disease
knowledge to postulate new combination hypotheses by associative
techniques of inductive and abductive inference®>®°. However, though
advances in informatics methods can aid the generation of new
hypotheses from connecting concepts in the literature, the drawback
of the knowledge-based methods is that they do not provide a robust
modeling analysis of the emergent properties of a network and system
when perturbed in new ways. Thus, counterintuitive, paradoxical and
unexpected system responses cannot necessarily be predicted by these
associative methods®”.

An intriguing possibility for systematic target identification is that
the structures of biological networks themselves may provide valuable
information in assessing targets and their combinations'#17381, Early
network analysis indicated the possibility of a direct correlation
between lethality and the degree of connectivity of nodes, where highly
connected hubs in protein interaction networks are more likely to be
essential®?, Subsequent re-analysis of the data challenged the relation-
ship between the number of interactions of a protein and its essenti-
ality®®>. However, the hypothesis that protein function relates to
network topology has been strengthened by recent work that has
refined the relationship between network topology and system function
by focusing on ‘betweenness centrality’ (the number of nonredundant
shortest paths traveling through a node®*%%) and ‘bridging centrality’
(nodes between and connecting subgraph clusters defined by the ratio
of the number of interactions of a neighboring node in a subgraph over
the number of remaining edges in the subgraph®), in addition to the
metric of the ‘degree centrality’ (the number of direct interactions
intersecting a node'*). Bottlenecks with high betweenness values tend
to be better correlated with gene expression dynamics and essentiality
than highly connected hubs®®7. These findings complement the
analysis on ‘party’ and ‘dates’ hubs, which suggests that hubs with
high betweenness values have pleiotropic functions across the net-
work®. Unexpectedly, non-hub bottlenecks with transient interac-
tions®> and bridging proteins are less likely to be lethal than average
and tend to be independently regulated®®. Thus, given their position in
communication between network clusters and their low lethality,
bridging nodes have been suggested as potential drug targets, although
modulation of the bridging targets themselves may still be indirect®®.
An initial network analysis on the current drug targets of approved
drugs indicated that drug targets are commonly highly connected but
not essential®70.

Despite initial challenges, several compelling theoretical and experi-
mental studies support the hypothesis that network topology is an
essential feature in the emergent system function of the protein when
it is perturbed; thus, this gives hope that systematic network analyses
may be a useful basis for developing methods to prioritize drug targets
and combinations of targets!”"71=77. However, if we are to success-
fully exploit network analysis for target identification, then we must
recognize the fundamentally different dynamics and kinetics in the
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Box 1 Polypharmacology playbook

Three strategies are available to the designers of multitarget therapies. The first
strategy, which is the most conventional, is to prescribe multiple individual
medications. Multidrug combination cocktails are the mainstay of highly active
antiretroviral therapy for HIV and a large number of anticancer protocols. The
drawback of prescribing multiple medications is patient compliance and the
danger of drug-drug interactions. To overcome these issues, a second strategy is
the development of multicomponent drugs that contain two or more active
ingredients formulated in the same delivery device, such as a single pill, capsule
or inhaler?252, Several successful drug combinations have now been reformu-
lated in single multicomponent medicines, such as Atripla, Advair, Caduet,
Combivir, Epzicom, Rebetron and Truvada. Advances in formulation technolo-
gies are expanding the number of drug combinations that can be effectively
combined into a single delivery mechanism. However, given the significant
differences in pharmacokinetics, metabolisms and bioavailability, reformulation
of drug combinations is not a trivial problem. Further, two drugs that are
generally safe when dosed individually cannot be assumed to be safe in
combination. In addition to the possibility of adverse drug-drug interactions, if
the theory of network pharmacology indicates that an effect on phenotype may
derive from hitting multiple targets, then that combined phenotypic perturbation
may be efficacious or deleterious. The major challenge to both drug combination
strategies is the regulatory requirement for each individual drug to be shown to
be safe as an individual agent and in combination. Therefore, most multi-
component drug development has focused on exploiting combinations of
approved drugs, with the notable exception of the torcetrapib-atorvastatin
combination that was being developed by Pfizer. A drawback of this approach
to drug combinations is that the target universe of the current pharmacopeia is
very limited. Current estimates are that the entire formulary of approximately
1,200 FDA-approved drugs only acts on about 320 molecular targets!l®
(excluding the incredibly promiscuous kinase drug sunitinib (Sutent,
SU11248), which itself binds to 79 protein kinases with Ky < 10 pM)116,
The third strategy for multitarget therapy is to design a single compound with
selective polypharmacology?®27:81, The advent of wide-ligand profiling has
revealed the extent of polypharmacology across the pharmacopeia, and it has
also shown that many approved drugs act on multiple targets2®115, Dosing with a
single compound may have advantages over a drug combination in terms of
equitable pharmacokinetics and biodistribution. Indeed, troughs in drug expo-
sure due to incompatible pharmacokinetics between components of a combina-
tion therapy may create a low-dose window of opportunity where a reduced
selection pressure can lead to drug resistance. In terms of drug registration,
approval of a single compound acting on multiple targets faces significantly lower
regulatory barriers than approval of a combination of new drugs.

way drugs perturb networks compared to genetic deletions. Genetic
deletions completely remove all the interactions and functions of the
node from a network, whereas a drug may only partially ablate some
interactions’® (such as decreasing the concentration of a metabolite)
but leave other links fully intact (such as protein-protein interactions).
In contrast, agonists may strengthen particular links in a network.
Thus, modeling attacks on links rather than nodes should provide a
closer model of drug action’"’8, Furthermore, an essential point is
that only about 15% of any protein nodes in a network may be
chemically tractable with small-molecule drugs®; therefore, it is
necessary to map druggability and polypharmacology interactions
on integrated biological networks in order to identify the optimal
points of interaction for drug discovery.

Designer polypharmacology

Network analysis does not preclude the identification of individual
targets that by virtue of their position in a disease network could be
modulated to achieve a beneficial clinical outcome. Indeed, the
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theoretical work on synthetic rescue suggests that inactivation of
one node, for example, by mutation or environmental factors, could
be compensated for by the therapeutic inactivation of a second
node!>”. Indeed, in terms of synthetic lethality, oncogenic mutations
may themselves form half of a synthetically lethal pair, thereby
resulting in the need to pharmacologically inhibit only one target®*>.

However, if drug hunters are to embrace the wider opportunity
posed by network pharmacology, then what is required is a ‘playbook’
of polypharmacology strategies to design therapies that act on several
nodes in a disease network (Box 1). For good reason, medicinal
chemists have tried to decrease the off-target effects of drug candidates
to try to decrease the chances of off-target toxicities. Analysis of the
Bioprint database of the complete screening matrix of FDA-approved
drugs against approximately 200 assays reveals a strong relationship
between calculated lipophilicity (clogP) and low-affinity off-target
promiscuity?’. The number of potential off-target activities appears
to double above the value clogP = 3.75 (ref. 80). The goal of
polypharmacology is not to lazily introduce nonspecific promiscuity
into a compound by increasing the lipophilicity but to identify a
compound with a desired biological profile across multiple targets
whose combined modulation will perturb a disease state. Thus,
understanding the broader polypharmacology profile of a compound
and rationally modifying its profiles should equally benefit safety
pharmacology as well as disease efficacy.

Specific design strategies are required to balance a set of biological
activities in one compound. Morphy et al have described the
continuum of design strategies medicinal chemists have traditionally
used to design drugs with multiple activities®’. At one end of the
spectrum are conjugated ligands, which contain separate pharmaco-
poeia entities connected by a linker. Ligands designed by conjugating
two distinct pharmacophores are more likely to have high molecular
weight and less likely to have oral drug-like physicochemical proper-
ties®2. At the other end of the spectrum are ligands where multiple
pharmacophores overlap or are highly integrated. Compounds with
overlapping or integrated pharmacophores are likely to have lower
molecular weight and potentially more drug-like physicochemical
properties. Ligands where polypharmacology has been deliberately
designed in, by conjugation or overlapping pharmacophores, tend to
have lower ligand efficiency than general preclinical compounds. This
finding is not surprising given that the compounds are not optimized
for one single target.

Designers of polypharmacology can also take lessons from the work
on drug resistance, particularly in the field of HIV-1 therapies.
Mutations of single amino acid residues are often sufficient to confer
drug resistance to many anti-HIV drugs, such as the non-nucleoside
reverse transcriptase inhibitors (NNRTTs). Efforts to discover second-
generation NNRTTs required compounds to be active against both the
wild type and the common drug-resistant mutations. Thus, second-
generation NNRTTs can be considered as multitarget drugs as they are
required to bind to several structurally distinct binding sites on a
spectrum of mutated reverse transcriptases. Crystallographic analyses
of the NNRTIs revealed that one design strategy is to identify
inhibitors that make strong molecular interactions with conserved
regions of the binding site, such as structurally important residues and
main chain atoms; this has the added advantage of reducing depen-
dence on interactions with mutable residues®’. Several of these design
strategies have also been derived a priori by theoretical analysis of
drug-resistant target ensembles®.

In addition to the relationship between lipophilicity and promis-
cuity, a strong relationship has also been reported between molecular
weight?>®2 and molecular complexity®* and promiscuity. In an
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analysis of a corporate screening database of 70,000 biologically active
small molecules screened over 200 molecular assays, Hopkins et al.
observed a tight relationship between molecular weight and the
polypharmacology of a compound, in ICs; measurements below
10 pM?>. These empirical observations are complemented by theore-
tical work by Hann et al., in which using a simple model of ligand-
receptor pharmacophoric interaction revealed that the probability of a
randomly chosen ligand binding decreases precipitously as the ligand
becomes more complex®. Assuming that molecular weight is a proxy
measure of molecular complexity, these observations from experi-
ments and models provide the foundation for understanding the
success of fragment-based lead discovery®, in which a small library
(500-2,000) of low-molecular-weight (100-250 Da) compounds can
be successfully used to find ligand-efficient®® ‘hits’ against a large
number of molecular targets. Therefore, it has been proposed that
multitarget fragment screens could be a promising approach for the
discovery of drug-like promiscuous ligands®”. In particular, surface
plasmon resonance®® may be well suited to multitarget fragment
screening owing to the increased sensitivity of the new generation of
instruments, the low protein consumption required compared with
NMR- and X-ray-based fragment screening, and the multiple chan-
nels that can be screened simultaneously®.

Alternatively, advances in cheminformatics and the availability of
large-scale structure-activity relationship (SAR) databases provide the
tools necessary to develop computational methods of multitarget
design. Large-scale, integrated chemogenomics knowledge bases,
such as that described by Paolini et al., enable the systematic search
across large datasets of integrated structure-activity data for com-
pounds that are observed or predicted to bind to multiple targets®.
For example, 35% of biologically active compounds in the data
warehouse built by Paolini et al. are observed to bind to more than

Figure 1 Human polypharmacology interactions
network at ten-fold selectivity. Network
representations of the integrated chemogenomics
space defined by Paolini et al.%%. Two proteins
(nodes) are defined as interacting in chemical
space (edges) if they bind at least 10% of shared
screened compounds with a difference in potency
of only ten-fold below an activity cutoff of
10 uM (that is, if a compounds exhibits an
IC50 = 10 nM against target A, it must show an
activity below ICsg = 100 nM against target B to
be considered interacting in this network). At
. these thresholds, 675 proteins are connected by
10,016 interactions in the total network by at
least one compound. Nodes are color-coded
by gene family: aminergic G protein—coupled
receptors (GPCRs), yellow; peptide GPCRs,
orange; other GPCRs, light pink; ion channels,
light blue; nuclear hormone receptors, brown;
phosphodiesterases, purple; protein kinases, pink;
enzymes, green; proteases, red; others, black.

one target, and the majority are active against
targets within the same gene family. However,
as we observed from the structure of a poly-
pharmacology interaction network that maps
12,000 interactions of 700 human proteins in
chemical space, there is a surprising level of
interaction between gene families (Fig. 1).
Though the predicted number of druggable
targets may be a relatively small fraction of
the proteome, the observed number of che-
mically tractable combinations (with integrated pharmacophores) is
over an order of magnitude larger®.

Wermuth expands this logic into a design strategy that can be used
for multitarget drug discovery called selective optimization of side
activities (SOSA)?»?2. The SOSA idea provides a pragmatic approach
to designing polypharmacology: rather than attempting the difficult
problem of merging and integrating pharmacophores, the starting
point is an integrated pharmacophore that already provides some of
the nascent activity profile. An opportunistic strategy may be to
investigate, given the polypharmacology profile of a particular com-
pound, what phenotypic behavior it exhibits. For example, an analysis
of the polypharmacology interaction network between drug targets
associated with asthma is shown in Figure 2. An SOSA analysis of this
graph provides a wealth of opportunities for identifying lead series
that already exhibit interesting mixtures of pharmacology (for exam-
ple, the edges between the nodes) that were identified by integrating a
number of SAR data sources. As in all drug discovery, the choice of
lead matter is crucial in determining the success of a project.
Traditionally, medicinal chemists have attempted to combine activities
to create multitarget drugs. A more productive approach may be to
focus efforts on the discovery of lead compounds with interesting
multitarget profiles from systematic data mining or multitarget
screening. Thus, one of the most pragmatic applications of network
pharmacology thinking could be to systematically reassess drug
candidates and drug discovery programs in the new light of under-
standing their wider biological activity profiles®.

Multitarget design

The key to identifying multitarget drugs is in appreciating their
limits. Although the opportunity space for compounds with specific
polypharmacology profiles may be significantly larger than the
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Figure 2 Expanding opportunity for drug
discovery space with polypharmacology. A subset
of the network data shown in Figure 1 for
literature targets associated with asthma. Drug
targets are represented as nodes, and chemical
matter that binds to two or more nodes is
represented as edges. Targets are colored by gene
family. The color of the edges represents the
strength of the chemical network between two
targets as defined by the number of shared
compounds that are active against both targets
below an affinity of 1 uM: light blue (1 to

10 compounds) to black (>1,000 compounds).
Of the 44 targets described in the literature

as potential drug targets for the treatment of
asthma, 44 share polypharmacology of existing
chemical matter with another potential target.
These 44 targets are identified for 137 target
combinations across > 10,000 compounds

in this portfolio. Thus, by considering both
single-target and dual pharmacology approaches,
at least 181 potential profile opportunities can
be examined. As this is an analysis of known
chemical matter and biological activities,

many of these profiles could be tested
immediately in appropriate disease models.

The network is represented in Cytoscapell”.

REVIEW

Drug targets are color-coded by gene family: aminergic GPCRs, yellow; peptide GPCRs, orange; lipophilic GPCRs, light pink; ion channels, light blue; nuclear
hormone receptors, brown; phosphodiesterases, purple; protein kinases, pink; enzymes, green.

opportunity universe for single-target drugs (which is outlined by the
druggable genome®), not all target pair combinations will be accessible
to a single agent with drug-like properties. Predicting chemically
tractable combinations can increase the chances of finding a multi-
target compound. In order to develop a drug with a desired poly-
pharmacology profile, two problems need to be solved. First, a lead
compound needs to be identified with the desired biological activity
against multiple targets; then, this lead needs to be optimized into a
clinical candidate that combines the desired polypharmacology with a
safe, drug-like pharmaceutical profile.

The integration of in silico methods, combined with wide-ligand
biological profiling against protein assays and gene expression arrays,
can provide drug designers with a new toolbox with which to assess
polypharmacology. First, proteins can be related by binding exact or
similar endogenous ligands or proteins; this can be determined by
exploiting data in gene ontologies and metabolic databases such as
KEGG>»%. Second, proteins can be related by known observed
polypharmacology of large sets of ligands such as those found in
pharmaceutical company screening sets and the medicinal chemistry
literature. A chemical network can be created that relates proteins that
bind the same ligand, where the strength of each edge can be
calculated using metrics of promiscuity®®70:20:96-%,

If experimentally derived ligand data are not available, proteins can
be related by predictions of polypharmacology®®100-104 Sets of ligands
for each protein obtained from chemogenomic data sources can be
used to train machine learning algorithms to predict pharmacology
activity profiles. Bayesian approaches can be used to classify chemical
structures based on chemical fingerprints®®!9%101 " Dynamically
cross-comparing the chemical similarity of sets of ligands for each
protein is a complementary and promising method of predicting
polypharmacology profiles from chemical structure!®»19!, The struc-
ture of the observed polypharmacology network itself also
provides information beyond chemical structure similarity that
could also be utilized using Bayesian network methods, as has

been the case in protein-protein interaction networks'®. Though
promising, chemical fingerprint-based similarity methods paradoxi-
cally are incompatible with the two simplest relationships—those
of lipophilicity and molecular weight with promiscuity—as larger
compounds tend to exhibit a greater number of fingerprints. The
development of improved polypharmacology prediction methods
will be an important topic in cheminformatics and toxicology.
Complementary to chemogenomics approaches to predict drug-
target relationships is the use of phenotypic data (such as clinical
side effects)!%410% or gene expression profiles'?” to cluster chemical
structures by functional effects. Clustering compounds by phenotypic
and gene signature profiles enables unknown mechanisms to
be inferred.

Structural bioinformatics methods that map gene family sequence
alignments onto the structural information of protein binding sites
provide a valuable first-order assessment of likely selectivity and
promiscuity within a gene family®>!%-11%, Comparing protein binding
site similarity with the observed polypharmacology networks could
provide insight into protein binding site parameters that map with the
behavior of chemical networks. For example, analysis of the protein
kinase superfamily in the human genome reveals discrete clusters of
subfamilies when the full-length sequences are compared (Fig. 3).
However, these subfamily clusters break down when the sequence
similarity is measured at the level of the ATP binding site, where most
kinase inhibitors bind. Hence, at a first approximation the difficulties
drug designers have in fine tuning the selectivity profiles of compe-
titive kinase inhibitors is not surprising!4!1112, Despite the inherent
challenge of achieving finely tuned kinase activity profiles, deriving
kinase SAR data!!?> from the wealth of large-scale chemogenomics
analyses and using subtle modification of existing kinase scaffolds to
exploit ‘de-hydrons’!!! are two promising strategies. Finally, if
three-dimensional protein structures of the targets of interest are
available, then parallel large-scale multitarget virtual screening is
also a promising method!!3.
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>gil1170188IspIP08631IHCK_HUMAN TYROSINE-PROTEIN KINASE HCK
MGGRSSCEDPGCPRDEERAPRMGSMKSKFLQVGGNTFSKTETSASPHCPVYVPDPTSTIKPGPNSHNSNTPGIREAGSEDI IVVALYDYEATHHEDL
SFQKGDQMVVLEESGEWWKARSLATRKEGYIPSNYVARVDSLETEEWFFKGI SRKDAERQLLAPGNMLGSFMIRDSETTKGSYSLSVRDYDPRQGDT
VKHYKIRTLDNGGFYISPRSTFSTLQELVDHYKKGNDGLCQKLSVPCMSSKPQKPWEKDAWEIPRESLKLE LGAGQFGEVWM TYNKHT VAVK
KPGSMSVEAFLAEANVMKTLQHDKLVK HAVVTKEPIY TEFMAKGS LD LKSDEGSKQPLPKLIDFSAQIAEGMAFIEQRNYI RDLR AN L
ASLVC ADFGLARVIEDNEYTAREGA F IK TAPEAINFGSFTIKSDVWSFGILLMEIVTYGRIPYPGMSNPEVIRALERGYRMPRPENCPEE

LYNIMMRCWKNRPEERPTFEYIQSVLDDFYTATESQYQQQP

Figure 3 Protein kinase inhibitor promiscuity as a function of binding site sequence similarity. (a,b) The full-length sequence of human protein tyrosine
kinase HCK (a), where the amino acids surrounding the ATP binding site are color-coded by their distance from the binding site surface when mapped onto
the canonical protein kinase structure (b). (c) Multidimensional scaling of the human kinome to cluster kinases using full sequences reveals that the kinases
cluster into discrete families. (d) Multidimensional scaling of the same kinases using the binding site-weighted sequences as defined in a and b reveals the
breakdown of the subfamily clustering and the similarity at the binding site level of many diverse protein kinases. Graphic courtesy of Colin Groom

(Cambridge Crystallographic Data Centre, Cambridge, UK).

Fusing multiple prediction methods is likely to improve the overall
success rates of in silico lead identification. Once a lead is identified,
the second computational design problem lies in the constraints of
optimizing in multiple dimensions. If we assume, as the data suggest,
that very few drugs are truly selective, then most biologically active
small molecules have a degree of promiscuity by their nature. The
challenge for medicinal chemists is to understand the profile of each
compound, to fine tune the profile, and then to select for clinical
development those compounds whose profiles maximally modulate a
disease network with the minimum level of toxicity and side effects.

Conclusion

Network pharmacology is an approach to drug design that encom-
passes systems biology, network analysis, connectivity, redundancy
and pleiotropy. Network pharmacology offers a way of thinking about
drug discovery that simultaneously embraces efforts to improve
clinical efficacy and understand side effects and toxicity—two of the
most important reasons for failure. A variety of studies have shown the
power of network analysis in understanding biological systems.
Furthermore, emergent phenotypes beyond those seen in single-gene
deletion experiments have been observed through synthetic behaviors,
combinations and chemical biology probes. The biological rationale
for considering multitarget strategies over single-target approaches is
compelling, yet such strategies are at present a minority activity in the
pharmaceutical industry. The reason is that optimizing multiple
activities, while trying to balance drug-like properties and control
unwanted off-target effects, is a difficult task. We do not yet have a
robust set of design tools with which to apply this approach routinely.
Structure-based drug design took nearly two decades of multiple,
parallel technological improvements to arrive at its current main-
stream position in medicinal chemistry. Developments in computer
graphics, high-power radiation sources, computational processing

power, refinement protocols, virtual screening and cryocrystallography
were all necessary to create the environment for rapid, iterative
structure-based drug discovery. To make network pharmacology
commonplace, a different set of tools, concerned with combinatorial
and network search algorithms and methods for predicting the
biological profiles, will need to be refined. Network pharmacology
re-introduces the old idea that understanding the biological and
kinetic profile of the drug is more important than individual valida-
tion of targets or combinations of targets. In many ways, the network
pharmacology strategy outlined here is a modern reinvention of Paul
Janssen’s original and incredibly successful methods of drug discovery,
where side activities of compounds are explored through a broad
spectrum of structure-activity relationships''%. Given the crisis in
translation facing the pharmaceutical industry, network pharmacology
offers a new framework for thinking about how to innovate drug
discovery, and thus it is an idea whose time has come.
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